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Abstract
Data assimilation is the process of combining observations with a model’s first
guess to determine the best estimate of the current state of the atmosphere. In
the case of numerical weather prediction the data assimilation step is carried out
using various types of Kalman filter equations, which are developed based on
the Gaussian assumption and are therefore unable to deal with non-Gaussianity.
Particle filters, by definition, can deal with non-Gaussianity and are well known
in statistics. They have a long tradition in the framework of ensemble data assim-
ilation (EDA) as well as Markov-Chain Monte Carlo (MCMC) methods. A key
challenge today is to employ such methods in a high-dimensional environment,
since the naive application of the classical particle filter usually leads to filter
divergence or filter collapse when applied within the very high dimensionality of
many practical assimilation problems (known as the curse of dimensionality).

In the first part of this thesis we introduce the Localised Adaptive Particle Fil-
ter (LAPF), which follows closely the idea of the classical MCMC or bootstrap
type particle filter, but overcomes the problems of filter collapse and divergence
using localisation in the sense of the Local Ensemble Transformed Kalman Filter
(LETKF) and adaptivity with an adaptive Gaussian resampling or rejuvenation
scheme in ensemble space. We have implemented the particle filter in the data
assimilation system for the global forecast model ICON at the German Meteo-
rological Service (DWD). We carry out simulations over a period of one month
with a global horizontal resolution of 52 km and 90 vertical layers. With four
variables analysed per grid point, this results in 6.6 ·106 degrees of freedom. The
LAPF can be run stably and shows a reasonable performance. We compare its re-
sults with the operational LETKF implementation of DWD for the ICON model.

Based on this work, we investigate the implementation of the Gaussian uncer-
tainty of individual particles in the assimilation step of the localised adaptive
particle filter. We obtain a local representation of the prior distribution as a
mixture of basis functions. In the assimilation step, the filter calculates the in-
dividual weight coefficients and new particle locations. It can be thought of as
a combination of the LAPF and a localised version of a Gaussian mixture filter,
i.e., a Localised Mixture Coefficients Particle Filter (LMCPF).

Again, we have implemented the LMCPF within the global operational frame-
work ICON of the DWD and evaluate the relationship between prior and pos-
terior distributions and observations. Our simulations are carried out in the
same standard pre-operational experimental setup as for the LAPF and addi-
tionally in a setup closer to the currently operational system. We are able to
show that the mixture approach is able to deal with the discrepancy between the
prior distribution and the observation location in ensemble space in a real-world
framework and to pull the particles towards the observations. This shows that
the use of Gaussian uncertainty can be an important tool to improve the analysis
and forecast quality in a particle filter framework.
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Chapter 1

Introduction

1.1 Motivation

Numerical Weather Prediction (NWP) models determine the evolution of phys-

ical processes in the atmosphere and at the surface to obtain weather forecasts

by solving mathematical equations based on physical laws like the conservation

of energy. As the atmosphere is a high dimensional, chaotic (Lorenz, 1963, 1995)

and non-linear system, a huge amount of observational data is needed to describe

its current state. Since this is not given, NWP is an initial value problem as the

initial weather conditions at each point on earth are unknown. Therefore, NWP

models run an ensemble of forecasts with slightly perturbed initial conditions

(Kalnay (2002), Kalnay et al. (2006)) to estimate the uncertainty in the meteo-

rological variables.

Data assimilation is the process of determining the initial states for NWP from

observations of the Atmosphere and the Earth’s surface. Therefore, initial condi-

tions (i.e. observations of the atmosphere like temperature, pressure and wind)

with a high accuracy are needed. To provide these high-quality measurements

and observations a combination of different sources is taken into account, includ-

ing data from direct observations (e.g. measurements provided by radiosondes,

aircrafts and buoys), as well as indirect observations (e.g. satellite data and
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radar data). Data assimilation then determines an integrated full state of the

Earth’s surface and the Atmosphere, taking into account the measurements and

the calculated model states. For the global NWP model ICON (see section 1.3)

a hybrid Ensemble Variational (EnVar) system is used. It consists of a Local

Ensemble Transform Kalman Filter (LETKF - based on Hunt et al. (2007)),

combined with a three-dimensional variational analysis (3d-Var).

A lot of research into all of these parts of NWP (the numerical model, data

assimilation and the use of more observations) has improved the accuracy of

forecasts enormously (see Fig. 1.1). 50 years ago the 1-day forecast has been

as good as the 7-day forecast is nowadays. In Figure 1.1 the verification of the

tendency correlation coefficient1 of the geopotential height2 at 500 hPa is shown,

and thus the development of the accuracy of the NWP at DWD.

Figure 1.1 shows the tendency correlation coefficient of the geopotential height

at 500 hPa forecasts from the global models used at DWD from 1968 to 2023

for the North Atlantic region and Central Europe. The blue shading indicates

the changes in the numerical models (from BKL to ICON) and the coloured

lines show the forecast-times (from 24 h to 168 h). It can clearly be seen that

a change in the model and the resolution leads to a large improvement in all

forecast times (e.g. the large increase in 1991 when the GM became operational

or in 2004 when the GME was introduced) but the improvement after a change in

the data assimilation system is even higher. The latest shown model change has

been the update of the resolution. Since 2015, the ICON model with a horizontal

resolution of 13 km for the deterministic run is used , causing a large improvement

which can be seen as an increase in the tendency correlation coefficient. The last

1The correlation coefficient ist given by: CC = (F−R−(F−R))(A−R−(A−R))√
F−R−(F−R))2·A−R−(A−R))2

with R is the

reference forecasts. To calculate the tendency correlation coefficient, the long-range dependence
has to be taken as reference forecast. (Damrath, 2002)

2The geopotential height is a measure of the height of a point in the atmosphere in relation
to its potential energy. This parameter plays an important role in synoptic meteorology (anal-
ysis of weather patterns). Charts of geopotential height plotted at constant pressure levels
can be used to identify weather systems such as cyclones, anticyclones, troughs and ridges.
(European Centre for Medium-Range Weather Forecasts, 2019)
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Figure 1.1: Tendency correlation coefficient of the geopotential height at 500
hPa forecasts of the global models used at DWD and corresponding analysis on
a 1.5°x1.5° grid over Cenral Europe and the North Atlantic. The forecast period
ranges from 24 to 168 hours in steps of 24 hours, as indicated by the colour of
the lines. Operational models are indicated by the coloured background, model
name and horizontal resolution (km) are indicated by labels. The tendency
correlation is the correlation of anomalies, forecasts and analysis were corrected
by the geopotential height at forecast initialisation. Yearly correlations were
obtained by arithmetic averaging of daily correlations. (Source: Image created
by DWD, FE1, Verification group, accessed 01.02.2023)

improvement in the horizontal resolution has been the update on 26 km for the

ensemble runs for the ICON model which has been operational since January

2023. An even larger improvement than that of the introduction of ICON can be

seen in 2016 were the new data assimilation system has been made operational.

Since 2016 the DWD is using an Ensemble Variational (EnVar) Data Assimilation

System, a combination of the LETKF for the 40 member ensemble and a 3d-Var

for the high-resolution deterministic run. Before 2016, the DWD didn’t run an

ensemble itself, so this really high improvement is due to use the combination of

the ensemble with the LETKF and a 3d-Var for the deterministic run.

This improvement is also visible in Figure 1.2 where the World Meteorological

Organization (WMO) verification against observations for the root mean square

error (RMSE) of the temperature at 850 hPa for a lead time of 24 h is shown.
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Figure 1.2: WMO verification against observations. Shown is the the root mean
square error of the temperature at 850 hPa for 24 h lead time for four different
NWP centres as timeline for the last ten years. The line colour indicate the
country - Japan orange, Met Office (UK) brown, ECMWF blue and DWD (Ger-
many) red. (Source: Image created by DWD, FE1, Verification group, accessed
01.02.2023)

Here, the colours are indicating four different operational NWP centres (orange

for the Japan Meteorological Agency, brown for the United Kingdom Met Office,

blue for the ECMWF and red for the DWD). It can clearly be seen that the RMSE

of the DWD is getting better (lower) since 2013, in 2016 the same very large

improvement can be seen as in Figure 1.1, when the Ensemble Data Assimilation

(EDA) was made operational.

The RMSEs in the extratropics are higher in the winter months than in the sum-

mer because the baroclinicity of the atmosphere is higher and therefore the low

pressure areas are more intense than in the summer. This means that the po-

tential for errors is greater (e.g. due to double-penalty effects), which is further

accentuated by quadratic error measures. Note that RMSE and predictability

are not the same thing. There is no simple, universally valid measure of pre-

dictability, but the added value of a prediction compared to the climate mean or

persistence is usually considered. In the extratropics, for example, the anomaly
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correlation is used, which is normalised by the amplitude of the deviations and

thus largely ignores amplitude-related double-penalty effects. The anomaly cor-

relation is usually better in winter than in summer. (Zängl, 2024)

Since the first launch of meteorological satellite in the 1960s, they have provided

the largest amount of observations worldwide and thus have a really big influ-

ence on the accuracy of the data assimilation (assimilated at ECMWF since the

late 1990’s) and thus on the forecasts. The assimilation of these data is very

important (Eyre et al., 2022), especially in regions with less conventional data.

Because of the non-Gaussianity of the error (Geer and Bauer, 2011) of this large

contributor to the observations, the aim of this thesis is to develop a particle

filter that has the potential to deal with non-Gaussianity.

1.2 Data Assimilation

Data assimilation is concerned with the use of observational data to determine

the state of a dynamical system. In the framework of weather forecasting, data

assimilation has a long history, ranging from early work by Bjerknes (1904) and

Richardson (1922) to modern ensemble data assimilation systems (see Bauer

et al. (2015)). In NWP, data assimilation links the model world to reality by

using a wide range of observations to determine the evolution of the atmosphere

and to provide initial conditions for weather forecasting.

The history of data assimilation methods which are used in an operational NWP

framework began with optimal interpolation from the 1960’s to the 1990’s. Vari-

ational methods such as three-dimensional variational assimilation (3d-Var) have

been used operationally since about 1990, with four-dimensional variational as-

similation (4d-Var) since the late 1990’s (operational at ECMWF since 1997).

Variational methods have the strength to calculate a best estimate either for one

time slice (3d-Var) or over some temporal window (4d-Var). The development of

ensemble data assimilation started in the mid 1990s and has been in operational

use since about 2010.
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The Ensemble Kalman Filter was developed by Evensen (1994), see also Evensen

and van Leeuwen (2000) and Evensen (2009). The idea has been applied to

global numerical weather prediction by Houtekamer and Mitchell (1998, 2001,

2005) and Houtekamer et al. (2005). In the area of geophysical data assimilation,

Burgers et al. (1998) developed the theoretical basis of the EnKF methods based

on perturbations of the observations. Whitaker and Hamill (2002) proposed the

alternative approach called ensemble square root filter (EnSRF). It does not use

randomly perturbed observations, but formulates a deterministic calculation of

the posterior ensemble.

Further variants of ensemble filters include for example the Singular Evolutive

Extended Kalman Filter (SEEKF) of Pham et al. (1998), the Ensemble Adjust-

ment Kalman Filter (EAKF) of Anderson (2001) and the Ensemble Transform

Kalman Filter (ETKF) of Bishop et al. (2001). Localisation is a key ingredient

of the Ensemble Kalman Filter of Houtekamer and Mitchell (1998) (denoted as

data selection with a cut-off radius), the work of Brusdal et al. (2003), the Local

Ensemble Kalman Filter (LEKF) of Ott et al. (2004) and the Local Ensem-

ble Transform Kalman Filter (LETKF) of Hunt et al. (2007), where all locally

available observations are assimilated in one step (locally in this context means

that only observations close to the analysis grid-point are used). Various other

forms of filters have been developed, see for example the GIGG Filter by Bishop

(2016). For an overview of ensemble-based data assimilation methods we refer

to Vetra-Carvalho et al. (2018).

Important current research topics on ensemble Kalman filters are covariance lo-

calisation and inflation, see van Leeuwen (2003a), Miyoshi et al. (2007), Miyoshi

and Sato (2007), Campbell et al. (2010), Greybush et al. (2011), Janjić et al.

(2011) and Periáñez et al. (2014). Flow-adaptive localisation has been described

by Bishop and Hodyss (2007, 2009a,b) and Anderson (2007); multiscale localisa-

tion by Miyoshi and Kondo (2013); flow-adaptive inflation by Anderson (2007,

2009), Li et al. (2009) and Miyoshi (2011). The investigation of large ensembles
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has been carried out for example by Miyoshi et al. (2014). However, these meth-

ods rely on the approximation of Gaussianity, which is a strong limitation when

applied to highly non-linear dynamical systems such as global or high-resolution

Numerical Weather Prediction (NWP).

Leaving the Gaussian regime, for which ensemble Kalman filters are best, par-

ticle filters take into account the full non-linearity of both the model dynamics

and the observation operators in applications, leading to strongly non-Gaussian

distributions on all temporal and spatial scales. Particle filters have a long his-

tory in stochastic modelling, where they have been used since the 1960s under

the name of iterative Markov Chain Monte Carlo (MCMC) methods (Bain and

Crisan (2009); Crisan and Rozovskii (2011)). The idea is to sample some prob-

ability distribution, where the number of samples reflects the local strength of

the probability density, their weights are adapted using observations and then

resampling is carried out. Several particle filter methods have been formulated

and tested for small-dimensional problems, ranging from early work by Gordon

et al. (1993) to the review by van Leeuwen (2009).

It is well-known that in a high-dimensional framework, standard particle filters

suffer from so-called filter collapse or filter divergence under the curse of di-

mensionality. This means that usually only very few or only one of the ensemble

members carry all the weight in the assimilation step. This immediately destroys

the diversity of the ensemble and leads to useless behaviour when applied in an

iterative way, compare van Leeuwen (2010); Snyder et al. (2008, 2015) or Bickel

et al. (2008). Different ideas have been developed to overcome filter collapse, for

example guiding the particles to the right places in the high-dimensional space

as in van Leeuwen (2010). Using localisation for particle filters has become pop-

ular, first introduced by Bengtsson et al. (2003); van Leeuwen (2003b,a), see also

for example Reich and Cotter (2015); Poterjoy and Anderson (2016) or Penny

and Miyoshi (2016). Frei and Künsch (2013) have developed a hybrid Ensemble

Kalman Particle Filter which Robert et al. (2017) have tested for the regional
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NWP model COSMO. To avoid filter divergence, they combine the particle filter

step with an ensemble Kalman filter step. Poterjoy (2016) works in a convective-

scale framework in comparison to the global setup, he also uses localisation as

a core component of his Localized Particle Filter. Poterjoy et al. (2019) have

successfully implemented the Localized Particle Filter (LPF) of Poterjoy (2016)

in the convective-scale ensemble system (NEWS-e), Poterjoy et al. (2017) imple-

mented it in the Weather Research and Forecasting (WRF) model. Ades and

van Leeuwen (2013, 2015) have adapted their Equivalent-Weights Particle Filter

(EWPF) to high-dimensional systems using a simple relaxation technique and

a proposal to ensure equal weights for the particles (see also Browne and van

Leeuwen (2015) who used the EWPF in the full scale coupled ocean atmosphere

circulation model HadCM3). Zhu et al. (2016) have further improved the EWPF

to their Implicit Equal-Weights Particle Filter (IEWPF). Wang et al. (2020) have

further developed the IEWPF to the Implicit Equal-Weights Variational Parti-

cle Smoother (varPS) - a combination of IEWPF and 4d-Var, that uses implicit

sampling to avoid filter divergence and have tested it in the Lorenz96 model.

Pinheiro et al. (2019) improves the IEWPF by using an efficient ensemble based

synchronisation scheme as the proposal density function and have also tested it

in the Lorenz96 model.

Instead of localisation Kawabata and Ueno (2020) have used an adaptive obser-

vation error estimator to avoid the filter collapse in a regional mesoscale model.

Hu and van Leeuwen (2021) implemented the Particle Flow Filter (PFF) in the

Lorenz96 model. The PFF overcomes the filter collapse by keeping the weights

of all particles equal at all times, by transforming the particles from the prior to

the posterior state space without the need to resample the weights.

Further, Gaussian Mixture models have been developed, based on the estimation

of the model error probability distribution by a set of Gaussians, see Hoteit et al.

(2008) or Stordal et al. (2011) for a hybrid method of a Gaussian Mixture and the

particle filter. Frei and Künsch (2013) develop a hybrid method for an EnKF and
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a particle filter. Kotsuki et al. (2022) have implemented the LPF of Penny and

Miyoshi (2016) and its Gaussian Mixture extension (LPFGM) to the Simplified

Parametrisations, Primitive Equation Dynamics (SPEEDY) model.

For recent reviews we refer to van Leeuwen (2009); Reich and Cotter (2015);

Farchi and Bocquet (2018); Vetra-Carvalho et al. (2018); Carrassi et al. (2018)

and van Leeuwen et al. (2019), see also Nakamura and Potthast (2015) and

Evensen et al. (2022).

1.3 The ICON Model and Deterministic Fore-

cast System

The ICOsahedral Nonhydrostatic (ICON) model is the operational global nu-

merical weather prediction (NWP) model of the German Meteorological Service

(DWD). It is a joint project of DWD and the Max-Planck-Institute for Meteo-

rology (MPI-M) (Zängl et al. (2014), see also Reinert et al. (2018) for a complete

documentation of the ICON model or the official website of the ICON model (the

ICON partnership , MPI-M et al.(2024)). ICON is based on the prognostic vari-

ables suggested by Gassmann and Herzog (2008) (for further information see also

Reinert et al. (2018)). But instead of using the three-dimensional Lamb transfor-

mation it uses the two-dimensional version to convert the non-linear momentum

advection into a vector-invariant form (Zängl et al. (2014)).

The model grid is based on an unstructured triangular grid that is generated by

successive refinement of a spherical icosahedron, which consists of 20 equilateral

triangles with an edge length of about 7054 km. These triangles are subdivided

(e.g., by bisection, trisection) into smaller triangles, leading to a model grid with

the desired spatial resolution. The use of this icosahedral grid provides a nearly

homogeneous coverage of the globe. After dividing the triangles the operational

grid of the ICON model consists of 2.949.120 triangles on each horizontal level.

Each triangle has an average area of 173 km2. This corresponds to the global
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horizontal resolution of 13 km for the deterministic run. For the operational

setup a two-way nested area over Europe with 6.5 km horizontal resolution is

included. Since November 23, 2022 the ensembles run with an operational hori-

zontal resolution of 26 km with a 13 km resolution nest over Europe.

The scalar prognostic variables (e.g., temperature, humidity) are located in the

centre of the triangles whereas the wind components are located at the edge

midpoints of the triangles. The most important prognostic variables (e.g., wind,

humidity, cloud water, cloud ice, temperature, snow, precipitation) are calculated

for all grid-cells on 120 terrain-following vertical model levels which range from

the surface up to a height of 75 km, leading to over 353 million grid points in the

operational setup. Additional prognostic equations are solved over land on eight

soil levels for soil temperature and soil water content. If snow is present, several

snow variables are also determined. Once per day (at 00 UTC) the sea surface

temperature (just over ice-free ocean) is analysed from observations and is kept

constant during the forecasts. For the sea ice fraction of the ice-covered oceans

we proceed in the same way. However, ice thickness and ice surface temperature

are determined by a simple sea-ice model.

Beyond the adiabatic processes in the atmosphere (horizontal and vertical trans-

port processes), diabatic processes (e.g., radiation, turbulence) play a major role

in NWP. Describing these small scale processes is part of the physics parametri-

sation of ICON.

Within the operational workflow, we distinguish the data assimilation cycle and

the forecast mode. During the data assimilation cycle a three-hour-forecast start-

ing from the previous analyses (the first guess) is blended with all observations

valid for a three-hour time window centred at the analysis date. It is an important

detail to note that traditionally the atmospheric analysis calculates increments

to four core variables (temperature, humidity, two wind components) at each

grid point in its three-dimensional grid, with pressure adapted according to the

hydrostatic equation. The model adapts further prognostic variables itself. Ad-
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ditional two-dimensional fields which are also adapted have been neglected in our

variable counts. To obtain an optimal initial state for the subsequent forecasts

we calculate a variational analysis with a dynamic covariance matrix, known as

Ensemble Variational Data Assimilation (EnVar). 70% of the covariance ma-

trix is calculated from the ensemble runs based on a Local Ensemble Transform

Kalman Filter (LETKF). Further 30% of the covariance matrix are given by its

climatological part based on the NMC method (Parrish and Derber (1992)). The

EnVar and the LETKF were made operational on January 20, 2016.

Based on the analyses for 00 and 12 UTC ICON provides a 180 hours forecast in

just one hour wall clock time. Forecasts over 120 hours are based on the analyses

of the 06 and 18 UTC run and the 30 hours forecasts are based on the 03, 09, 15

and 21 UTC analyses.

1.3.1 The ICON Ensemble Prediction System

The ICON Ensemble Prediction System (ICON-EPS) has run pre-operationally

since January 2016 providing background error correlations for the operational

global EnVar system of DWD, with operational forecasts including all ensemble

products since January 17, 2018.

The ICON-EPS initial conditions are provided by the LETKF, which is part of

the hybrid data assimilation suite LETKF+EnVar for the ICON model. The

ICON-EPS is run up to 180 hours at 00 and 12UTC, up to 120 hours at 06

and 18UTC and up to 30 hours at the three hourly intervals in between with

the main purpose to generate forecasts and ensemble boundary conditions in the

short range of up to 30 hours lead time every three hours.

1.4 Objectives

In the operational NWP centres Kalman filters in various ways are used to cal-

culate the data assimilation step (e.g. the DWD uses a LETKF, the ECMWF
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uses a Reduced Rank Kalman Filter (RRKF) within their 4d-Var framework).

The Kalman filter equations are developed based on the Gaussian assumption

and therefore aren’t designed for dealing with non-Gaussianity. Classical parti-

cle filters are able to deal with non-Gaussianity, but in high-dimensional setups

they suffer from filter divergence under the curse of dimensionality (van Leeuwen,

2010), and so they aren’t able to run stable over a long period of time and thus

can’t be used for weather prediction. Therefore, the aim of this thesis is to de-

velop particle filters that do not suffer from degeneration and therefore run stable

over a longer period of time. For this aim, two different localised particle filters

are formulated and tested. They will be compared with the operational LETKF

implementation of the DWD in the ICON model.

The first particle filter is the Localised Adaptive Particle Filter (LAPF). It is

the first particle filter implemented in a global high dimensional and large-scale

operational NWP model. We will show that, with appropriate adaptation, as

e.g. localisation, ensemble transformation (based on LETKF), the particle filter

can be a stable and useful approach in a large-scale operational framework.

The LAPF is per construction not able to pull the particle towards the observa-

tions, as it just chooses the nearest particles to the observations and than draw

around them with a determined spread. So that the LAPF isn’t able to handle

biases or even correct them.

The second particle filter shall be able to pull the chosen particles towards the

observations to receive better results. The LMCPF overcomes this problem by

using Gaussian Mixtures. The Mixtures approach is able to deal with the dis-

crepancy between prior distribution and observation location and thus is able

to pull the particles towards the observations. By giving each particle a certain

bias, the LMCPF is able to pull them closer to the observations. The smaller

the number of particles selected, the more important is the pulling towards the

observations steps.
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1.5 Thesis structure

This thesis is divided into 6 chapters. Chapter 2 gives a brief introduction into

Bayes’ Theorem and the LETKF (Hunt et al. (2007)) implementation at DWD.

In Chapter 3 we describe the Localised Adaptive Particle Filter implemented in

the operational NWP model ICON of DWD. This work has been published in

Potthast et al. (2019). Chapter 4 deals with Particle Filtering with Model Error

- a Localised Mixture Coefficients Particle Filter (LMCPF), where we develop a

particle filter that overcomes the deficiencies of the LAPF. The results presented

in this chapter have been accepted for publication in Rojahn et al. (2023). In

Chapter 5, we discuss an interpretation of the LMCPF as Implicit Equal-Weights

Particle Filter (IEWPF by Zhu et al. (2016)). In the last Chapter of this Thesis,

Chapter 6, we give a general conclusion and discuss some suggestions how to

extend the work at particle filters.
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Chapter 2

Background Methodology

This chapter gives an overview of the data assimilation methods which are used

as the basis for the particle filters developed in this thesis.

As mentioned in the introduction of this thesis, we need a data assimilation step

to determine initial conditions for the weather forecast given some observations

using a NWP model. In our case this means, that we have determined the prior

state of the atmosphere, given by a prior distribution, by taking the analysis

of the data assimilation step before. To receive the analysis - the posterior

distribution - we have to use Bayes’ Theorem and update the prior distribution.

Therefore, Bayes’ Theorem is explained in section 2.1.

The Localised Ensemble Transform Kalman Filter (LETKF) of Hunt et al. (2007)

is used as the basis and reference for both particle filters developed in this thesis.

Its implementation in the data assimilation system of the DWD is explained in

section 2.2.

2.1 Bayes’ Theorem in Data Assimilation

In this section a brief overview of Bayes’ Theorem is given.

The basic idea of a Bayesian assimilation step is to calculate a posterior distri-

bution based on a prior distribution, model states and some given observations.
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The Bayes’ formula is given by

p(x|y) = p(x) · p(y|x)
p(y) . (2.1.1)

The prior distribution p(x)

The prior distribution p(x) is the a priori knowledge of the model states x.

In the case of operational numerical weather prediction (NWP) the prior dis-

tribution p(x) is obtained from a model forecast. This means that the starting

point of the data assimilation process is the so called ’analysis’ distribution of

the data assimilation cycle one time step before.

The data distribution p(y|x)

The data distribution p(y|x) gives the probability of the observations y given the

model states x. It is also known as the conditional likelihood.

For example, in the case of NWP: x are the model states of the temperature (i.e.

the determined temperatures) and y are the true, observed observations.

The distribution of observations p(y)

p(y) is the probability distribution of the observations y.

The posterior distribution p(x|y)

The posterior distribution p(x|y) gives the probability of the model states x given

the observations y. It is also known as the conditional probability and it is pro-

portional to the product of the prior p(x) and the data distribution p(y|x).

Bayes’ Theorem can be derived from the definition of conditional probability (for

further details see for example Nakamura and Potthast (2015), Section 4.2). The

conditional probability of x under the condition y is given by

p(x, y) = p(x|y) · p(y). (2.1.2)
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Taking Equation 2.1.2 twice and swapping the roles of x and y leads to

p(x, y) = p(x|y) · p(y) = p(y|x) · p(x), (2.1.3)

which leads directly to the Bayes’ formula:

p(x|y) = p(x) · p(y|x)
p(y) . (2.1.4)

In our case of numerical weather prediction, Bayes’ theorem is applied as follows.

Let us recall the stochastic notation where xk ∈ Rn denote model states of di-

mension n and yk ∈ Rm is the vector of m observations at time tk. Bayesian

data assimilation starts with some prior distribution. The analysis step employs

observations to derive an analysis distribution. This analysis distribution is prop-

agated to the next time step, where it acts as a prior distribution for the sub-

sequent assimilation step. We consider the analysis distribution p(a)(x) for time

t0 as the initial state. Then the analysis distribution is propagated in time by a

short range ensemble forecast, from tk−1 to tk to obtain the first guess distribu-

tion p(b)
k (x). Afterwards, Bayes’ formula p(x|yk) = p

(b)
k

(x)·p(yk|x)
p(yk) , x ∈ Rn, yk ∈ Rm

is employed to calculate the new analysis distribution

p
(a)
k (x) := p(x|yk) = cp(yk|x)p(b)

k (x), x ∈ Rn, (2.1.5)

where c is a normalisation constant so that

∫
Rn
p

(a)
k (x) dx = 1. (2.1.6)
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2.2 The operational Localised Ensemble Trans-

form Kalman Filter (LETKF) implementa-

tion of DWD

This section explains the operational LETKF implementation of DWD and all

its inherent parts, e.g. observation handling and localisation. The LETKF serves

as the reference for all experiments with particle filters.

2.2.1 Observations

Observation operators are evaluated at three hourly intervals in the cycled data

assimilation code. Observation types currently include profiles of e.g. tempera-

ture and humidity measured by weather balloons (TEMP and PILOT), ships

(SHIP), classical land-based weather stations (SYNOP), buoyes and drifting

buoyes (DRIBU), wind profiler, aircraft (AIREP), atmospheric motion vectors

(SATOB), radio occulations (GPSRO), scatterometers (SCATT) and satellite

radiances (RAD). Observational quality control (observation minus first guess

check) and bias correction (for radiances and individual aircrafts) is performed

in the deterministic data assimilation system. Bias corrected observations and

quality control flags are then further passed to the ensemble data assimilation

system.
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Obs.type processed dismissed passive rejected active
SYNOP 108480 418 88447 588 19027
AIREP 267469 214216 294 4226 48733
SATOB 598548 554036 1200 2690 40622
DRIBU 1663 515 45 20 1083
TEMP 113696 0 83443 2067 28186
PILOT 31968 19672 8498 492 3306
SCATT 413105 313788 17911 18262 63144
RAD 58654581 42741985 15464187 298628 149781

GPSRO 20178 0 1224 383 18571
total 60209688 43844630 15665249 327356 372453

Table 2.1: Shown are statistics of the use of different observation types. Example
for 31.05.2016 0 UTC - taken from the first LETKF reference experiment

Table 2.1 shows some statistics on the use of the different observation types.

The statistics are determined for the reference experiment of 2016 with which

the LAPF and LMCPF are compared. It is shown how many measurements per

observation type are processed and how many are actively assimilated at the end

of the quality control. The following observations conditions are shown:

processed all observation going into the data assimilation system
dismissed bad observations which can’t be used, e.g. observations with miss-

ing or corrupted values
passive good observations which passed the quality control but aren’t as-

similated actively (e.g. because of thinning), but they are further
used, e.g. for bias correction or cloud detection

rejected observations which didn’t pass the quality control, e.g. satellite
data which are cloudy

active good observations which are actively assimilated

In the case of this example of our reference experiment an amount of 91568

observations are actively assimilated. As the ICON model and data assimilation

system as well as the number of considered observation types have changed during

the last 7 years, the current operational ICON model uses a much larger number

of observations (see Table 2.2).

In Figure 2.1 an example for the coverage of the used radiance observed by

satellite instruments for one assimilation step (31.05.2016 0 UTC) is shown.

The figure shows the active assimilated observations (brightness temperatures
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Obs.type processed dismissed passive rejected active
total 92637101 70131543 20336098 1387224 782236

Table 2.2: Shown are statistics of the number of all observations for the currently
operational ICON model for 24.04.2023 0 UTC.

Figure 2.1: Shown is the coverage of observations measured by two satellite
instruments (AMSU-A and ATMS) on totally 5 satellites (MetOp-A and -B,
NOAA-15 and -19 and NPP) for one assimilation step (31.05.2016 0UTC) at
approx. 50 hPa. Each grey dot shows an observation. Data taken from the
LETKF reference experiment.

determined from radiances) of two microwave satellite instruments (AMSU-A

and ATMS) flying on a total of five satellites (MetOp-A and -B, NOAA-15 and

-19 and NPP). It can clearly be seen that even with these two instruments an

almost complete coverage of the Earth can be achieved. In total, four satellite

instruments, measuring radiances on five satellites, have been assimilated for

the 2016 reference experiment. The second experimental period of the LMCPF

has been determined for January 2022 and therefore assimilates a much larger

number of satellite radiances (15 instruments on 22 satellites) than the older ref-

erence experiment. The current operational setup of the ICON model assimilates

radiances measured by 12 instruments on 23 satellites.

To compare with the radiance data coverage in Figure 2.1 the global coverage of
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Figure 2.2: Shown is the coverage of observations of two different observation
types - left: upper air temperatures measured by AIREPs, right: relative hu-
midity measured by SYNOPs. Shown are the statistics for one assimilation step
(31.05.2016 0UTC). Each grey dot shows an observation. Data taken from the
LETKF reference experiment.

AIREPs and SYNOPs for the reference experiment of 2016 are shown in Figure

2.2. It can clearly be seen that AIREPs as well as SYNOPs cover some regions

very well (e.g. North America resp. Europe) but especially over Africa there is

nearly no observation. This again shows the importance of satellite data for the

global coverage of observational data.

2.2.2 LETKF

The formulation of the LETKF at DWD is based on the proposal of Hunt et al.

(2007). The Ensemble Kalman Filter equations are solved in ensemble space (39

dimensions in case of 40 members). In principle, the Kalman gain matrix uses

the background error covariance matrix Pb in order to determine the analysis

increment of the ensemble mean and the symmetric square root of the analysis

ensemble covariance matrix Pa. Practically, a weight matrix W is derived, which

is used for the construction of the analysis ensemble as a linear combination of

the forecast ensemble members. Since our particle filter implementations directly

imitates the LETKF transform, we need to look into more detail here. The

operational LETKF system implements equations (20) and (21) of Hunt et al.

(2007), i. e.,

wa = P̃a(Yb)TR−1(y0 − yb) (2.2.1)
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for calculating the mean of the analysis ensemble and P̃a given by

P̃a = [(L− 1)I + (Yb)TR−1Yb]−1, (2.2.2)

where we use the letter L for the number of ensemble members and the notation

wa for the linear coefficients of the analysis mean. P̃a denotes the L×L analysis

covariance in the space of ensemble coefficients. R is the observation error co-

variance matrix, y0 are the observations, yb is the mean of the model equivalents

Hxb of the observations, H the observation operator and Yb is the matrix of

ensembles minus mean in observation space. Equation (2) of Hunt et al. (2007)

in model space lead to (22) and (23) of Hunt et al. (2007),

xa = xb + Xbwa, (2.2.3)

Pa = XbP̃a(Xb)T , (2.2.4)

where xa is the analysis mean and Xb is the matrix of ensemble minus its mean.

The analysis ensemble is calculated as in (24) of Hunt et al. (2007). We obtain

Xa = XbW (2.2.5)

using

W = [(L− 1)P̃a]1/2 (2.2.6)

with the symmetric square root denoted by the 1/2 power of the symmetric

matrix P̃a. We note that a derivation of this algorithm with its links to classical

inverse problems theory can also be found in Nakamura and Potthast (2015),

Chapter 5.

2.2.3 Localisation on R

Localisation is performed by calculating independent analyses (weight matrices

W) at each analysis grid-point using only the observations in the vicinity of
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that location. The observations are weighted smoothly in dependence on their

distance to that point according to a localisation function chosen as the 5-th order

polynomial described in Gaspari and Cohn (1999), which is similar to a Gaussian

but has compact support. We use a horizontal localisation length scale of 300

km and a vertical length scale varying from 0.3 (given in ln(p)) at the surface

and 0.8 at the model top (75 km). The length scales are defined following Daley

(1993) using the second derivative of the localisation function c at its origin:

l =
√
−1/(∇2c(0)). For a Gaussian this coincides with the standard deviation of

the distribution. Formally, the inverse of the observation error covariance matrix

R (in (2.2.2), respectively (2.2.6)) is weighted by a point wise multiplication

with the function defined by Gaspari&Cohn, such that observations which are

located in a larger distance from the current analysis grid point receive less

weight when calculating the analysis. Therefore, this procedure is often denoted

as localisation on R.

2.2.4 Multiplicative Inflation and RTPP

The analysis ensemble spread is adjusted by multiplicative inflation with a fac-

tor ranging from 0.9 to 1.5, based on an online estimate of spread and ensemble

mean RMSE in observation space, following Houtekamer et al. (2005). The infla-

tion factor is estimated locally based on the statistics on observation minus first

guess differences as described in Section 3.1.4 and the W matrices are adjusted

respectively. In addition, a relaxation to prior perturbation (RTPP) is applied

following Whitaker and Hamill (2012), with a rate of 0.75. The latter preserves

a reasonable situation-dependent spread-skill relationship in the analysis cycle.

2.2.5 Assimilation Grid and Interpolation

Tapering the observations with a smooth function and taking the symmetric

square root in the LETKF algorithm ensures that the weight matrices only

change on scales of order of (or larger than) the localisation length scale. For this

reason it is sufficient to derive the weight matrices W on a coarser analysis grid
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G, as for example described in Yang et al. (2009), with spacing of order of this

prescribed length scale. Afterwards the W are interpolated to the model grid,

and the final analyses are derived by taking linear combinations of the forecast

ensemble members according to the interpolated weight matrices.

2.2.6 Additive Covariance Inflation

In order to account for model errors additive random perturbations consistent

with 25% of the amplitude of the climatological B-matrix used in the determin-

istic EnVar assimilation system are added to the analysis ensemble members.

In addition, the sea surface temperature (SST) is perturbed by random per-

turbations of 1 K which are a linear combination of perturbations with spatial

correlation length scales of 100 km and 1000 km and a time scale of one day.

2.2.7 Incremental Analysis Update

The analysis increments applied by the cycled data assimilation system as well as

the stochastic perturbations introduce imbalances and spin up effects which are

diminished by using an incremental analysis update (IAU) scheme, see Bloom

et al. (1996). The combined analysis increments from the LETKF, inflation

schemes, and additive perturbations are added to the model trajectory dispensing

them over a time interval of three hours, symmetrically adjusted around the

analysis date.

2.2.8 Quality of the baseline system

To validate the quality of the NWP system of DWD two plots of the World Mete-

orological Organization (WMO) Ensemble Prediction System (EPS) verification

against analysis are shown.

Figure 2.3 shows the skill of the EPS verification against analysis for the 72 h

lead time forecast of temperature at 850 hPa for the Northern Hemisphere. The

colours indicate four different forecast centres - orange for Japan Meteorological

Agency (JMA), brown for Met Office of the United Kingdom (UKMO), blue for

European Centre for Medium-Range Weather Forecasts (ECMWF) and red for
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Figure 2.3: WMO Ensemble Prediction Systems (EPS) verification against anal-
ysis for four different countries. The line coloures indicate the country - JMA
orange, UKMO brown, ECMWF blue and DWD red. Shown is the skill of
verification against analysis as time line from 2018 to 2023 for the Northern
Hemisphere for the temperature at 850 hPa for a lead time of 72 h. (Source:
Image created by DWD, FE1, Verification group, accessed 24.04.2023)

German Meteorological Service (DWD). It can clearly be seen that the skill of

the DWD forecasts is on the same level as the skill of the UKMO forecasts and

for the end of 2022 and the beginning of 2023 it is even on the same level as the

forecasts of the ECMWF.

Figure 2.4 shows again the EPS verification against analysis but for the contin-

uous rank probability score (crps) for the u-component of the wind speed for

the 48 h lead time forecasts. Again, it can be seen that the DWD system has

been improved during the last five years and is now nearly on the same level as

the ECMWF forecasts and even better than the systems of Japan and the Met

Office.
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Figure 2.4: Shown are the same statistics as in Figure 2.3 but for the continuous
rank probability score (CRPS) instead of the skill and for the u component of
the wind speed for a lead time of 48 h at 850 hPa. (Source: Image created by
DWD, FE1, Verification group, accessed 24.04.2023)
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Chapter 3

The Localised Adaptive Particle

Filter

The contents of this chapter have been published in Potthast et al. (2019). Since

the reader should be able to read this as a standalone chapter, some parts of

Chapter 2 are recapitulated.

Here, we introduce the Localised Adaptive Particle Filter (LAPF) with adaptive

Gaussian resampling and spread control. The main objective of this work is to

investigate the feasibility and performance of a stable particle filter for global

numerical weather prediction with the ICON model in the setup explained in

chapters 1.3 and 1.3.1.

The concept of the LAPF is chosen to be as parallel as possible to the Localised

Ensemble Transform Kalman Filter described in section 2.2, which serves as a

reference for comparison and whose core algorithm is replaced by the LAPF

algorithm. Here, we basically replace the analysis step (section 2.2) by the steps

described in sections 3.1.1 to 3.1.5, keeping the observation handling, quality

control, and part of the inflation and localisation facilities unchanged.

Firstly, section 3.1.1 presents the classical particle filter basis of the method,

where as an important first step we describe the ensemble transform version

of this particle filter. Afterwards, we describe the projection onto ensemble

27



space in section 3.1.2. Then, we go into details of classical resampling in section

3.1.3, describe the indicator for spread control in section 3.1.4 and the adaptive

Gaussian resampling or rejuvenation in section 3.1.5. We note that the adaptive

Gaussian rejuvenation is carried out on top of classical resampling i.e., this is an

additional tool for spread control added to the classical particle filter.

3.1 The Localised Adaptive Particle Filter (LAPF)

with Gaussian Resampling

3.1.1 The classical Particle Filter

The classical Particle Filter uses an ensemble x(l) of states which represents

the prior probability distribution p
(b)
k at time tk in the form of δ-distributions.

Alternatively, particles are considered as draws from this prior distribution and,

in the case of L particles, they each carry a weight of 1
L
. To carry out the analysis

step at time tk, weights are calculated by

wk,` := cp(yk|x(l)), ` = 1, ..., L, (3.1.1)

where c is a normalisation constant and for the particles x(l) corresponding to

Equation (2.1.5) in Chapter 2.1 (page 17). We note that sometimes we use the

normalisation to L for easier discussion, i.e.∑`=1,...,Lwk,` = L. Then for the prior

each particle carries the weight 1.

3.1.2 Projection onto ensemble space.

In the following, we drop the explicit declaration of the time index k and write

yo for the observations yk at time tk.

As seen from (2.2.1), the LETKF is based on the projection of the observation

onto ensemble space of observation equivalents. For brevity we use Y for Yb.

We note that the orthogonal projection of the observation difference yo−yb onto

28



the ensemble space {Yw : w ∈ RL} with respect to the scalar product weighted

by R−1 in Rm is given by

P (yo − yb) = Y(YTR−1Y)−1YTR−1(yo − yb), (3.1.2)

compare for example Lemma 3.2.3 of Nakamura and Potthast (2015) using the

adjoint Y∗ = YTR−1 based on the weighted scalar product in Rm and the

Euclidean scalar product in the space RL of ensemble coefficients1. The corre-

sponding particle filter weights (3.1.1) at time tk based on this projection are

given by its ensemble transform projection

wk,` := ce−
1
2 [P (yo−Hx(`))]T R−1[P (yo−Hx(`))], ` = 1, ..., L, (3.1.3)

with normalisation constant c. AbbreviatingA := YTR−1Y and C := A−1YTR−1(yo−

yb), we first note

yo −Hx(`) = yo − (yb + Ye`) = (yo − yb)−Ye`, ` = 1, ..., L (3.1.4)

and

P (yo −Hx(`)) = YA−1YTR−1((yo − yb)−Ye`)

= Y(C − e`), ` = 1, ..., L. (3.1.5)

where e` is the standard unit vector which is one in its `-th component and zero

otherwise. Now, the exponent of (3.1.3) is transformed into

P (yo −Hx(`))]TR−1P (yo −Hx(`)) = [C − e`]TA[C − e`], ` = 1, ..., L, (3.1.6)

1This is readily obtained from 〈z,Yw〉R−1 = 〈z,R−1Yw〉 = 〈YT R−1z, w〉 = 〈Y∗z, w〉,
where 〈·, ·〉 denotes an inner product and where z ∈ Rm and w ∈ RL, see Nakamura and
Potthast (2015) for a detailed introduction.
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leading to

wk,` = ce−
1
2 [C−e`]TA[C−e`], ` = 1, ..., L. (3.1.7)

The classical weight (3.1.1) is known to lead to filter divergence in high-dimensional

spaces. Here, the ensemble transform and the projection P onto ensemble space

lead to a significant reduction of the dimensionality. The observation vector

y ∈ Rm is mapped onto the vector A−1YTR−1(yo − yb) in the space RL with

ensemble size L. The weights (3.1.3) now penalize the distance of the ensemble

members e`, ` = 1, ..., L in RL to the projection C of the observations onto en-

semble space. The histograms in Figure 3.1 (see page 37) show the result of this

projection step, which in combination with adaptive Gaussian resampling and

localisation leads to a feasible behaviour of the particle filter weights.

To evaluate the relationship between the classical particle filter weights and the

ensemble space particle filter weights we note

wclassicalk,` = ce−
1
2 [(yo−Hx(`))]T R−1[(yo−Hx(`))]

= ce
− 1

2 [
(
P+(I−P )

)
(yo−Hx(`))]T R−1[

(
P+(I−P )

)
(yo−Hx(`))] (3.1.8)

= ce−
1
2 [P (yo−Hx(`))]T R−1[P (yo−Hx(`))] · e−

1
2 [(I−P )(yo−Hx(`))]T R−1[(I−P )(yo−Hx(`))]︸ ︷︷ ︸

=c̃

,

where we use the orthogonality of the projection P with respect to the scalar

product with weight R−1 such that the mixed terms of P with I − P vanish.

The second exponential factor in the last line of (3.1.8) is equal to a constant c̃

for all ` = 1, ..., L since we have

(I − P )(yo −Hx(`)) = (I − P )(yo − yb + Ye`)

= (I − P )(yo − yb)− (I − P )Ye`︸ ︷︷ ︸
=0

. (3.1.9)

If the ensemble space spans only a small part of the full state space, the con-

stant c̃ can be very small, so the ensemble transformation can be performed in

observation space, since the contribution perpendicular to P is common to all
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ensemble members and gives a contribution independent of `. Thus, the ensem-

ble transformation effectively removes a very small but uniform factor from the

ensemble weights.

After the determination of the weights (3.1.7) the classical resampling (Section

3.1.3) is carried out. Then, the spread control (Section 3.1.4) will be prepared.

Subsequently, the adaptive Gaussian resampling step (Section 3.1.5) will be ex-

ecuted.

3.1.3 Classical Resampling

The LAPF carries out a classical resampling step based on (3.1.7), suggested

already in Gordon et al. (1993). For resampling, accumulated weights wac`
,

` = 1, ..., L, are defined by

wac0 = 0, wac`
= wac`−1 + wk,`, ` = 1, ..., L, (3.1.10)

where we now employ normalisation to the total weight of L. Then, similar to

Bain and Crisan (2009) (see also Alam and Gustafsson (2020), Nicely and Wells

(2019)), we draw r` ∼ U([0, 1]), ` = 1, ..., L, set R` = ` − 1 + r` and define the

transform matrix for the particles by

W̆i,` =


1, if R` ∈ (wac`−1 , wac`

],

0, otherwise,
(3.1.11)

i, ` = 1, .., L with W̆ ∈ RL×L, where (s, t] denotes the interval of values s < η ≤ t.

This is carried out for each analysis grid point p ∈ G, for brevity however, we

use W̆ instead of W̆(p).

3.1.4 Spread Control

In ensemble data assimilation systems the spread of the ensemble evolves as a

result of model dynamics, model errors (represented by additive perturbations
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or multiplicative inflation) and active observations2, and thus relies on a correct

specification of model and observational errors. As it is very difficult to properly

estimate and model these errors the spread of the ensemble is adjusted. In

the operational LETKF an adaptive inflation factor ρ is estimated, based on

statistics of observations minus first guess (compare Desroziers et al. (2005) and

Li et al. (2009)). For this purpose we use adaptive Gaussian resampling with

parameters based on the estimate of ρ in the LAPF. It is derived from the

observation minus background (o−b) statistics, the current ensemble spread and

the assumed observation error. Its determination is based on

do−b = yo −H(xb) = yo −H(xt) +H(xt)−H(xb) ≈ εo −Hεb (3.1.12)

with the true background state xt, the background state xb, the linearisation H

of H, the vector of observation errors εo and the vector of background errors

εb. Then, if the observation errors and background errors are uncorrelated, we

obtain

E[do−bdTo−b] = E[εo(εo)T ] + HE[εb(εb)T ]HT (3.1.13)

(see Desroziers et al. (2005)). To estimate the inflation factor we substitute

the expectation values of the background and observation error with the ac-

tual ensemble covariance matrix Pb multiplied by the inflation factor ρ and the

nominal covariance of observation error R, respectively: E[εb(εb)T ] ≈ ρPb and

E[εo(εo)T ] ≈ R resulting in

E[do−bdTo−b] ≈ R + ρHPbHT . (3.1.14)

Now by taking the trace Tr(A) = ∑m
j=1 ajj of the matrices on both sides, using

Tr
(
A+ Ã

)
= Tr(A) + Tr

(
Ã
)
, Tr

(
ρÃ
)

= ρTr
(
Ã
)
and Tr

(
vvT

)
= Tr

(
vTv

)
, the

2Active observations are those which passed the quality control, see section 2.2.
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inflation factor ρ is estimated by

ρ = E[dTo−bdo−b]− Tr(R)
Tr
(
HPbHT

) (3.1.15)

(following Desroziers et al. (2005) and Li et al. (2009)).

(3.1.15) computes a scalar inflation factor ρ based on a set of observations and

the corresponding ensemble spread in observation space. It is carried out locally

as a localised ensemble data assimilation method is employed, i.e. we calculate

ρ(p) = dTo−bdo−b − r2

q2 (3.1.16)

at each point p ∈ G with the local innovation vector do−b, the observation error

r2 = Tr(R) and the local estimate q2 := Tr
(
HPbHT

)
of the background error

covariance in observation space. The factor ρ(p) is the estimate for the local

variance inflation at the analysis point p in the LETKF.

Due to the localisation procedure the number of observations used in this method

may be small and the estimated value of ρ may be based on limited statistics.

To make the estimate more robust we first limit ρ by lower and upper bounds of

0.9 and 1.5 and afterwards perform a temporal smoothing: A weighting factor

α = 0.05 is chosen to combine the ρ̃k estimated by (3.1.16) in the current cycle

k and the ρk−1 used in the previous analysis cycle (3 h in the past) to get the ρk

to be applied in the current cycle k:

ρk = αρ̃k + (1−α)ρk−1, k = 1, 2, 3, ... (3.1.17)

In the LETKF, ρ is used at each analysis grid-point to calculate the filter trans-

formation matrix Winfl by

Winfl(p) =
√
ρ(p)W(p), p ∈ G, (3.1.18)

where W is the transform matrix defined in (2.2.6). For the localised adaptive
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particle filter pure multiplicative inflation is not appropriate, since it would just

inflate the distribution of the remaining duplicate ensemble members. Instead we

apply the Gaussian resampling based on (3.1.15) - (3.1.16) as described below.

3.1.5 Gaussian Resampling or Rejuvenation

The LAPF first calculates the ensemble weights according to the ensemble space

projection (3.1.7) and the resampling (3.1.11) at each of the analysis points

p ∈ G. Usually this resampling leads to a part of the total number of parti-

cles only getting the majority of the weights. Often, a rejuvenation step (see

Doucet et al. (2001) or van Leeuwen et al. (2015), equation (2.39)) is carried out

around each of the remaining particles, i.e., new particles are generated based

on a pseudo-random draw in ensemble space. We note that this rejuvenation

can be considered as classical resampling from some posterior represented by a

superposition of Gaussian functions in the spirit of classical MCMC methods

(Nakamura and Potthast (2015), Chapters 4 and 5). Note also that jittering is

a special case of rejuvenation.

In contrast to Lang et al. (2022), who are using Metropolis Hasting for jittering,

we draw from a Gaussian distribution around each remaining particle in ensemble

space, used with appropriate multiplicity as constructed by W̆ in (3.1.11). Using

a Gaussian with mean given by the column vector W̆` of W̆ and with a covariance

matrix σ2I ∈ RL×L, this leads to a draw from a distribution in physical space

with mean given by the ensemble {x(`), ` = 1, ..., L} and the re-scaled ensemble

covariance matrix σ2Pb.

Global Rejuvenation

A pseudo-random matrix N ∈ RL×L with each element draw from a Gaussian

distribution with mean zero and covariance 1 is chosen globally to ensure the

best possible continuity of the meteorological variables in physical space. Since

resampling is global, without modulating the random matrix N the resulting
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perturbations would be scaled superpositions of the original ensemble members,

keeping linear balances completely and non-linear balances to some degree. How-

ever, adaptivity of the pseudo-random draws turns out to be crucial to avoid filter

divergence and filter collapse. Only after adapting the spread of the rejuvenation

or resampling carefully as follows, the filter started to be stable.

Adaptivity

For the adaptive resampling step the size of the draw (given by N) is modulated

by applying a scalar perturbation factor σ for each analysis grid point. Scaling

of the draw around each member at time tk is carried out by

W(p) = W̆(p) + N · σ(ρk(p)). (3.1.19)

The specification of the factor σ is based on the inflation parameter ρk estimated

in (3.1.17):

σ(ρ) :=


c0, ρ < ρ(0),

c0 + (c1 − c0) · ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1)

c1, ρ > ρ(1),

(3.1.20)

where elementary tuning tests lead to the values c0 = 0.02, c1 = 0.2, ρ(0) = 1.0

and ρ(1) = 1.4 (which might not be an optimal choice). The function continuously

depends on ρ with σ = c0 if ρ 5 ρ0 and σ = c1 if ρ = ρ1.

We summarize that we always perturb each of the remaining members of the

filter after the classical resampling step by a Gaussian with standard deviation

of at least c0 and at most c1. The scaling is a continuous function of the input

parameters of our estimator of ρ, i.e. it depends continuously on space, on the

observations and the ensemble members. The only discontinuities can occur

when the matrix W̆ in dependence of the spatial point p itself is discontinuous

according to a change in the weights resulting from the classical resampling
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procedure.

Finally, the full analysis ensemble (Hunt et al., 2007) is given by

X(a,full) = x(b) + X(b)W

= x(b) + X(b)W̆︸ ︷︷ ︸
class. resampling

+ X(b)Nσ︸ ︷︷ ︸
rejuvenation

(3.1.21)

Number of Surviving Particles

We remark that the adaptive Gaussian rejuvenation ensures that with probability

one the analysis ensemble consists of L distinct particles. However, in the first

classical resampling step, the number of distinct particles can be significantly

smaller with the limiting case where only one particle gains all the weight, such

that after resampling and before rejuvenation we have L identical copies of this

particle in a given localisation point. It is of course highly interesting to study the

statistics of how many particles remain at each analysis grid point and in what

way the ensemble projection (3.1.3) helps the filter to stay away from collapse.

In Figure 3.1 for three dates close to the end of the experimental period we

show some histograms of the number of particles at each analysis grid point

surviving the first resampling step, i.e. those particles with weights wk,l ≥ 1

before rejuvenation when normalising the total weight to L. The results show

that at 100 hPa (high level with few data, first column) mainly five to twenty

particles obtain most of the weight. There are considerably fewer cases where

twenty to forty particles survive the classical resampling step.

In the middle of the troposphere (500 hPa, column in the middle) it can clearly

be seen that the first date (20.05.2016, 03UTC) and the third date (31.05.2016,

21UTC) show a quite similar distribution. The number of cases with one up to

thirty particles with weight larger than one is very similar. For the second date

(second row - 25.05.2016, 12UTC) there are only a few cases with more than

twenty surviving particles. This is probably due to the larger amount of synoptic
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Figure 3.1: Here we show global histograms of the number of particles with
weights above 1 (when the total weight is given by the number of particles L)
for three dates and three pressure levels. In the first row we show results for
May 20, 2016 at 03 UTC, the second row displays results for May 25, 2016 at 12
UTC and in the third row the results for May 31, 2016 at 21 UTC are shown.
From left to right we show the levels 100 hPa, 500 hPa and 1000 hPa. The x-axis
shows the number of particles (Np) with weight larger than one, the y-axis the
percentage of analysis grid points with these numbers.

data at 12UTC compared to 03 and 21UTC.

The result for the bottom level (1000 hPa, last column) differs from the other

two levels. In all these sub-figures there exists one peak at one to five particles.

For the first and the third row there is also a peak at thirty particles. The first

peak might be due to model biases in the boundary layer in combination with a

high number of observations.

A high number of observations leads to a small number of particles surviving

the classical resampling, which is the well-known filter divergence phenomenon.

We remark, however, that due to the ensemble transform and projection step

of Section 3.1.1, this divergence does only occur in a part of the localisation

boxes. Further, adaptive Gaussian rejuvenation in ensemble space guarantees

the calculation of L distinct analysis ensemble members with a controlled spread

and distribution.
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Figure 3.2: Examples for transformation matrices W of the LAPF after Gaussian
resampling. We show W at one analysis grid point (60N, 90E (Siberia)), at
levels of 100 hPa, 500 hPa, 750 hPa and 1000 hPa (from left to right and top
to bottom) for May 26, 2016, 00 UTC. The x-axis shows the analysis ensemble
index, the y-axis the first guess ensemble index.

Examples

Examples for the matrix W from (3.1.19) are displayed in Figure 3.2. The

W matrices show how the analysis ensemble is constructed from the first guess

ensemble. Entries close to one indicate that an analysis ensemble member is

sampled from the respective first guess member. In general some first guess

members lead to multiple analysis members whereas others are dismissed totally

(only entries close to zero in that row). The deviations from zero or one are

consequences of the Gaussian resampling step.
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In the first case (top left, in the lower stratosphere with few observations) the

analysis members are sampled from a large number of first guess particles. Going

further to the ground fewer first guess particles are selected, but are replicated

multiple times due to their large weight. This is caused by the larger number

of observations further down in the atmosphere putting more constraints on the

prior distribution.

It may also be noted that in the first sub-figure the strength of the Gaussian

resampling is weak so that entries remain close to zero or one, respectively. In

the subsequent figures, the estimated inflation factor is larger so that final weights

almost fill the range in between -0.5 and 1.

3.2 Numerical Tests in the Operational Frame-

work and Results

Here, we present tests of the localised adaptive particle filter for the global ICON

model for a typical experimental setup and for a time period of one month. In

particular, we investigate the assimilation cycle and forecast scores in some detail,

diagnosing the development of spread, bias, scores and the stability of the system.

We start with a short description of the experimental setup in section 3.2.1.

Afterwards we evaluate the assimilation cycle of the LAPF experiment in Section

3.2.2. As reference we use the LETKF implementation which is operational at

DWD. With the help of spread control, the LAPF provides reasonable results

and is stable over the full experimental period. In Section 3.2.3 we investigate

the quality of forecast runs and compare it to the performance of the system in

the operational setup.

39



3.2.1 Development Environment, Experimental Setup and

Period

The main goal of our work is to investigate the feasibility and performance of

a stable particle filter for global numerical weather prediction with the ICON

model. For our experimental test we chose the period of May 1-31, 2016.

Since quality control is carried out based on the deterministic run, it is always

part of experiments. Here for the development of the LAPF, we choose the es-

tablished 52 km experimental resolution for the ensemble and 26 km for the

deterministic run. In standard DWD experiments, Ensemble Data Assimilation

tests are usually run with the operational ensemble size L = 40 members, which

is also our choice for the LAPF development. In this setup, we study the per-

formance and stability of the particle filter in direct comparison to the LETKF

based operational setup. Here, we use the term stable to denote a filter which

does not degenerate, i.e. the spread of the ensemble does nor become too small

or too large, providing some realistic estimate for the forecast uncertainty (Brett

et al., 2013).

The development of the Localised Adaptive Particle Filter takes place in the

Data Assimilation Coding Environment of DWD. The suite includes modules for

snow analysis (SNOW) every three hours, sea surface temperature analysis (SST)

and soil moisture analysis (SMA) once per day. The surface analysis consists of

separate modules in which amongst others random perturbations are added to

the ensemble members. For our experiments this part has been kept identical to

the operational setup (compare Reinert et al. (2018)).

3.2.2 Assimilation cycle

For the experimental diagnostics, a spin-up period of one week is excluded from

the observation minus first guess3 statistics, as bias correction algorithms and

3First guess, also known as background, in the context of the DWD’s data assimilation
system, is the three-hour forecast based on the previous analysis.
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ensemble spread have to adapt to the new method.

We first investigate upper-air observation minus first guess (obs-fg) statistics

based on radiosonde observations (TEMP). Some selection of results is displayed

in Figure 3.3, in particular bias (ME), root mean square error (RMSE) and

standard deviation (SD) for 3-hour-forecasts (first guesses), generated by the

reference (LETKF) and the particle filter (LAPF). These statistics are based on

observations which passed the quality control, i.e. which were actually used in

the assimilation. Figure 3.3 visualises statistics for the global domain and for

the time period May 8, 2016 to May 31, 2016.

The results show that the root mean square error and standard deviation of the

current LAPF is about 10%-15% worse than those of the LETKF. It also shows

that the system is functioning and shows comparable features to the LETKF

based statistics. The LAPF shows better results for upper air temperature than

for relative humidity. For the bias, the results for relative humidity determined

by the LAPF are slightly better than the results of the LETKF (in the sense

that they are closer to zero). The values of RMSE and SD in the vertical col-

umn show similar shape, but with higher values for LAPF. Overall, this first

implementation of the LAPF scheme, where we were not yet able to carry out

the time-consuming full tuning which is usually done for an operational system,

shows a very reasonable behaviour in comparison to the LETKF.

Since filter collapse and filter divergence are of high interest, we next investigate

the behavior of corresponding diagnostics, investigating spread behaviour and

the number of surviving particles in each resampling step.

Figure 3.4 shows the spread averaged over all ensemble members for May 31,

2016 at 00 UTC, i.e. at the end of the first month of cycling. Displayed is

the spread at ICON-level 64 (approximately 500 hPa) for upper air temperature

and specific humidity. In this context spread is the point wise variance of the

ICON-EPS.

• The left panels in the second and third row show the fields for the LAPF,
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Figure 3.3: Observation minus ensemble mean first guess statistics in the 3-
hourly assimilation cycle for the period May 8, 2016 to May 31, 2016 in the global
domain: mean deviation (ME - left column), root mean square error (RMSE -
middle column) and standard deviation (SD - right column). The first row shows
upper air temperature [K], and the second row relative humidity [0..1]. Solid
lines indicate the reference (LETKF), dashed lines the experiment (LAPF).
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Figure 3.4: Spread at model level 64 (approx 500 hPa) for May 31, 2016, 00
UTC. The first row shows differences for a) upper air temperature [K] and b)
specific humidity [kg

kg
] between LETKF and LAPF. The second row shows fields

for upper air temperature (LAPF in panel c), LETKF in panel d)), and the third
row shows the fields for specific humidity (LAPF in panel e), LETKF in panel
f)).
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the right panels those for the LETKF. In the first row the differences of the

spread between LETKF and LAPF are displayed for upper air temperature

in a) and specific humidity spread in b). It can clearly be seen that the

structures are similar, but the spread for both variables is higher for the

LETKF (σT = 0.6653 K and σq = 0.0003 kg
kg
) than for the LAPF (σT =

0.5037 K and σq = 0.0002 kg
kg
).

• The main structures of the spread of LAPF and LETKF show similar

physical features. The differences between the two filters are more random

and linked to the stochastic parts of the methods.

• The regions with the maximum of spread are also the places where the

LAPF and the LETKF differ most. One example for this is the temperature

over Madagascar. Here the spread of the LETKF is much larger than that

of the LAPF. Also, the vortex over western Siberia shows a big difference

between the two filters.

• For the specific humidity the biggest differences are situated in the tropics

where humidity values are large. The spread difference plot clearly resem-

bles the patterns of the spread in specific humidity itself. It indicates that

the differences between LAPF and LETKF are often situated at the bor-

ders of the big vortices. The largest differences are situated for example

in the region around the west coast of Mexico, where the LAPF has a

maximum but the LETKF does not.

For studying the development of the spread and the stability of the filter, time

series from May 1, 2016 to May 31, 2016 for both filters are plotted in Figure

3.5. The spread starts from zero and needs a couple of days to settle, because we

started all members from the same state duplicated L = 40 times. The first row

shows the mean of the spread for upper air temperature and specific humidity,

calculated at each point in time and for one horizontal level of the atmospheric

grid. For both quantities the LAPF shows lower values for mean-spread than

44



Figure 3.5: Time series of the first guess ensemble spread at ICON-level 64
(approx 500 hPa) averaged globally. The left column shows the spread for upper
air temperature [K], the right one for specific humidity [kg

kg
]. The upper row

shows the mean, the middle row the minimum and the lower one the maximum
of the spread (red (solid) line = LETKF, blue (dashed) line = LAPF).

the LETKF. The same holds for the minimum value of the spread. However, the

maximum values of the spread of the LETKF and the LAPF show quite similar

values.

3.2.3 Forecast Verification

Forecasts were run twice a day at 00 UTC and 12 UTC. In Figure 3.6 and 3.7 a

verification of temperature, relative humidity and wind components compared to

radiosonde observations is shown: continuous ranked probability score (CRPS),

standard deviation (SD), root mean square error (RMSE) and bias (ME) for

lead times of 24, 48, 72, 96, 120 and 144 hours for the forecasts based on the

LETKF and the LAPF analyses. The determination of SD, RMSE and MEAN is

based on the ensemble mean. At this stage, the results show that in the current

development stage the LAPF does not outperform the LETKF. However, the

shapes of CRPS, SD and RMSE are comparable, indicating that the LAPF is

stable and has a reasonable behaviour. The humidity bias of the LAPF is reduced

in comparison to the LETKF at all heights above 850 hPa. It is consistent with
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Figure 3.6: Global statistics of forecasts against observations for the period of
May 2, 2016 to May 24, 2016. Displayed is the continuous ranked probability
score (CRPS, left column), the standard deviation (SD, column two), the root
mean square error (RMSE, column three) and the mean (ME, right column).
The first row shows the statistics for upper air temperature [K], the second row
for relative humidity [0..1]. The solid line indicates the reference (LETKF), the
dashed line the experiment (LAPF). Colours indicates different lead-times (from
24 h to 144 h).
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theory and implementation that the particle filter does not draw the model fields

to the observations as strongly as the LETKF, a distance which is maintained

throughout all forecast lead times and explains the behaviour of the scores.

Figure 3.7: Same as in Figure 3.6 but for u-component of wind [m
s

] (upper row)
and for v-component of wind [m

s
] (lower row).

3.3 Conclusions

Standard algorithms for data assimilation used for large-scale atmospheric anal-

ysis in operational centres include the Ensemble Kalman Filter and 4d-Var.

These data assimilation methods are either inherently or practically based on

the assumption that the underlying distribution is Gaussian. If the ensemble

distribution is not Gaussian, these methods are not optimal. In the case of non-

Gaussianity more general Bayesian methods such as the particle filter have been

proposed. The core idea of the particle filter is to realise the Bayesian approach

giving a weight to each particle depending on its distance to the observations.

47



The adaptation of particles is carried out in different ways (van Leeuwen et al.,

2019), either by resampling (Potthast et al., 2019; Rojahn et al., 2023), nudg-

ing particles towards some proposal distribution (Zhu et al., 2016; van Leeuwen,

2010) or by optimal transport processes (Reich, 2013).

Classical particle filter in high dimensional dynamical systems suffer from filter

divergence or filter collapse due to the curse of dimensionality. In this chapter we

have developed and implemented a Localised Adaptive Particle Filter (LAPF)

in ensemble space with spread control and Gaussian resampling or rejuvenation.

With the help of modulated rejuvenation we prevent the filter divergence as

well as filter collapse. It has been implemented for global atmospheric data

assimilation to fit into the framework of the global operational weather prediction

model ICON of DWD.

The LAPF was tested over a period of one month with 40 ensemble members,

a global horizontal resolution of 52 km and 90 vertical layers in an operational

setup with slightly reduced resolution. A comparison of the scores with those

of the operational system of DWD (with some modest reduction of resolution)

shown in Section 3.2 demonstrate that the localised adaptive particle filter is

able to provide reasonable atmospheric analysis in a large-scale environment.

We have shown that for this first attempt the RMSE-quality of forecasts based

on the LAPF is 10-15% behind the forecast quality of the LETKF for forecasts

up to several days (compare Figure 3.6 and 3.7) and BIAS is partly improved, in

particular for humidity. Altogether, for the assimilation cycle and forecasts the

LAPF shows promising results (Figure 3.3). Furthermore, we are able to demon-

strate the stability of the LAPF over a period of one month (compare Figures

3.4 and 3.5) and show that atmospheric data assimilation within an operational

modelling environment is possible based on a localised adaptive particle filter

approach.
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Chapter 4

Particle Filtering and Gaussian

Mixtures - On a Localised

Mixture Coefficients Particle

Filter (LMCPF) for global NWP

The contents of this chapter have been accepted for publication in Rojahn et al.

(2023). Since the reader should again be able to read this as a standalone chapter,

some parts of Chapter 2 are recapitulated.

Here, our starting point is the investigation of the behaviour of the Localised

Adaptive Particle Filter (LAPF) with respect to errors in the prior distribution

p
(b)
k . By studying the statistics of the observations vector mapped into ensemble

space, we will show that in many cases the model forecasts show significant

distance to the observations, and the particle filter based on a limited number of

δ-distributions does not pull the particles close enough to the observations when

the move of particles is only achieved through adaptive resampling.

To allow individual particles to move towards the observations, we further de-

velop the LAPF by bringing ideas from Gaussian Mixtures into its framework.

We reach this goal by including model and forecast uncertainty for each parti-
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cle, as for example suggested by the Low-Rank Kernel Particle Kalman Filter

(LRKPKF) of Hoteit et al. (2008), compare also Liu et al. (2016a) and Liu et al.

(2016b). The basic idea is to consider each particle to be a Gaussian where its

width is representing its uncertainty. This means we study a prior distribution

given by a Gaussian mixture. Note that this is a special case of Radial Basis

Functions (RBFs). Then, the prior has the form

p(b)(x) := c
L∑
`=1

c`e
− 1

2 (x−x(b,`))T G−1(x−x(b,`)), x ∈ Rn, (4.0.1)

with constants c` = 1/
√

(2π)n det(G) for the individual Gaussian basis functions

with mean x(b,`) and covariance G and a normalization constant c, which in this

case is given by c = 1/L. For this approximation, and when the observation

operator H is linear, we can explicitly calculate the posterior distribution as a

corresponding Gaussian Mixture, i.e.

p(a)(x) := c̃
L∑
`=1

c`w`e
− 1

2 (x−x̃(a,`))T G̃−1(x−x̃(a,`)), x ∈ Rn, (4.0.2)

with some matrix G̃ (calculated e.g. in Chapter 5.4 of Nakamura and Potthast

(2015)), constants w` given by

w` =
∫
Rn
c̃`e
− 1

2 (x−x(b,`))T G−1(x−x(b,`))e−
1
2 (y−H(x))T R−1(y−H(x)) dx

=
∫
Rn
c̃`e
− 1

2 (x−x̃(a,`))T G̃−1(x−x̃(a,`))e−
1
2 (y−H(xb,`))T (HGHT +R)−1(y−H(xb,`)) dx

= c̃`

√
(2π)n det

(
G̃
)
e−

1
2 (y−H(xb,`))T (HGHT +R)−1(y−H(xb,`))

= e−
1
2 (y−H(xb,`))T (HGHT +R)−1(y−H(xb,`)) (4.0.3)

with c̃` = 1/
√

(2π)n det
(
G̃
)
explicitly calculated by equation (40) in Schenk

et al. (2022), with temporary analysis states x̃(a,`), ` = 1, ..., L, with

c̃ := 1∑L
`=1 c`w`

√
(2π)n det

(
G̃
) ,
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and with the components

q(a,`)(x) := c̃c`w`e
− 1

2 (x−x̃(a,`))T G̃−1(x−x̃(a,`)), x ∈ Rn. (4.0.4)

The constant c̃ will normalize the integral of p(a) to one, but not individual terms

q(a,`) given by (4.0.4).

If there are no further constraints to the variables, the `-th posterior particle can

be directly drawn with relative probability w` from the distribution component

q(a,`)(x) leading to an analysis ensemble member x(a,`). This drawing process is

carried out based on localisation, adaptivity and the transformation into ensem-

ble space as developed for the LAPF (see chapter 3); details will be described

in sections 4.1.1 and 4.1.2. As for other particle filters, the posterior particles

will be calculated by an ensemble transform matrix, with details worked out in

Section 4.1.2. For each posterior ensemble member, based on the prior Gaussian

mixture, this matrix defines transformation coefficients arising from the weights

of each particle. The name Localised Mixture Coefficients Particle Filter (LM-

CPF) has been used to distinguish from other localised particle filter methods.

For example, Reich and Cotter (2015) present Localised Particle Filter (LPF)

versions, which include sophisticated optimal transport properties. A further

LPF method is introduced by Penny and Miyoshi (2016). We note that the

choice for G of formula (4.0.1) as a scaled version of the ensemble correlation

matrix of Hunt et al. (2007), i.e. G = κB, with B = 1
(L−1)XXT , resembles the

choices made for the LETKF (Hunt et al., 2007) and leads to very efficient code.

We will investigate the usefulness of the Gaussian uncertainty within the particle

filter in very high-dimensional systems, leading to moves or shifts of the particles

towards the observations. Statistics of these shifts will be shown, demonstrating

that for this global atmospheric NWP system the uncertainty plays an important

role, since it controls the spread of the ensemble and therefore the stability of the

filter. Further, our numerical results show that the LMCPF is a particle filter

with a quality comparable to the LETKF for state-of-the-art real-world opera-
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tional global atmospheric NWP forecasting systems. This will be demonstrated

by numerical experiments based on an implementation of the particle filter in

the operational data assimilation software suite of DWD.

The LMCPF is introduced in section 4.1, where we start in section 4.1.1 with

a summary of the ingredients we use from the LAPF of chapter 3.1. Then, an

elementary Gaussian filtering step in ensemble space is described in Section 4.1.2.

Finally, the full LMCPF method is presented in Section 4.1.3. We describe the

high-dimensional experimental environment for our development and evaluation

framework for numerical tests in Section 4.2. The numerical results for the

global weather forecasting model ICON are shown in Section 4.3. We study

the statistics of the relationship of observations and the ensemble as well as

the corresponding statistics of the shift vectors of the Gaussian particles of the

LMCPF. We show the large improvements with respect to standard NWP scores

which the LMCPF can achieve compared to the LAPF. Additionally, we present

case studies comparing the LMCPF forecast scores to the operational LETKF.

4.1 The Localised Mixture Coefficients Particle

Filter (LMCPF)

Our setup for data assimilation is to employ an ensemble {x(b,`) ∈ Rn, ` = 1, ..., L}

of states, which are used to estimate or approximate p(b)(x) (corresponding to

Equation (2.1.5) (page 17), see Chapter (2.1) for an Introduction into Bayes

Theorem). The basic analysis step of data assimilation is to construct an analysis

ensemble {x(a,`) ∈ Rn, ` = 1, ..., L} of analysis states, which approximate p(a)(x)

in a way consistent with the approximation of p(b)(x) by x(b,`), ` = 1, ..., L.

The above idea is common to both the Ensemble Kalman Filter (EnKF) and to

particle filters. We employ the notation

X(b) :=
(
x(b,1) − x, ..., x(b,L) − x

)
∈ Rn×L (4.1.1)
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for the matrix of ensemble differences to the ensemble mean x defined by

x := 1
L

L∑
`=1

x(b,`) ∈ Rn. (4.1.2)

For the ensemble differences in observation space we employ

Y(b) :=
(
y(b,1) − y, ..., y(b,L) − y

)
∈ Rm×L (4.1.3)

with the mean y defined by

y := 1
L

L∑
`=1

y(b,`) ∈ Rm (4.1.4)

and

y(b,`) := H(x(b,`)). (4.1.5)

From now on we will use X for X(b) and Y for Y(b) for brevity. In the case

of a linear observation operator we have y = Hx and Y = HX. Usually, for

EnKFs, the approximation of the covariance matrix is chosen to be based on the

estimator

B := 1
L− 1

L∑
`=1

(x(`) − x) · (x(`) − x)T ∈ Rn×n. (4.1.6)

The estimator B can also be written as B = 1
L−1XXT . Usually, in this case the

prior is approximated by

p(b)(x) = cBe
− 1

2 (x−x)T B−1(x−x) (4.1.7)

with B−1 well defined1 for all x = x+Xβ with some vector β ∈ RL. We note that,

in general B is rank deficient and can’t be inverted. However, by the arguments

1The standard arguments, see Lemma 3.2.1 of Nakamura and Potthast (2015), show in-
jectivity of XXT on R(X): XXTXβ = 0 with β ∈ RL yields XTXβ ∈ N(X) ∩ R(XT ) =
R(XT )⊥ ∩ R(XT ), thus XTXβ = 0. The same argument for Xβ ∈ N(XT ) yields Xβ = 0,
thus XXT is injective on R(X). For surjectivity we consider v ∈ R(X), i.e. v = Xw with
w ∈ RL = N(X) ⊕ N(X)⊥ = N(X) ⊕ R(XT ), such that w = w1 + w2 with w1 ∈ N(X) and
w2 = XTβ with some β ∈ Rn = R(X) + R(X)⊥. Repeating the last argument leads to a
β1 ∈ R(X) with w = XTβ1 and thus surjectivity. Invertibility of B is thus shown.
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of Nakamura and Potthast (2015) on the given subspace inversion is possible.

The normalisation constant cB can be calculated based on a matrix Φ ∈ RL×L̃

which consists of an orthonormal basis of N(X)⊥ ⊂ RL of dimension L̃ < L by

cB :=
(∫

RL̃
e−

1
2 (XΦα)T B−1(XΦα)

√
det(ΦTXTXΦ) dα

)−1
, (4.1.8)

where det
(
ΦTXTXΦ

)
is the Gramian of the injective mapping XΦ : RL̃ → Rn,

i.e. the determinant of the Gram matrix ΦTXTXΦ. The approximation of the

classical particle filter is

p(b)(x) = c
L∑
`=1

δ(x− x(b,`)), x ∈ Rn, (4.1.9)

with the δ-distribution δ(·) and a normalisation constant c = 1/L. A well-

known idea is to employ Gaussian mixtures (c.f. Hoteit et al. (2008); Liu et al.

(2016a,b)), i.e. use the approximation

p(b)(x) = c
L∑
`=1

c`e
− 1

2 (x−x(b,`))T G−1
`

(x−x(b,`)), (4.1.10)

where G` ∈ Rn×n is some symmetric and positive definite matrix which describes

the uncertainty of the individual particle, c` = 1/
√

(2π)n det(G`) is a normalisa-

tion constant for each of the Gaussians under consideration and c is an overall

normalisation constant.

• The matrix G` is the covariance of each Gaussian and can be seen as a

measure for the short-range forecast error consisting of model error and

some of the uncertainty in the initial conditions beyond the distribution

of the ensemble of particles itself. We will discuss the important role of

G` in several places later, when we describe the LMCPF and its numerical

realisation. In particular, we will investigate the situation where G` is a

multiple of the covariance matrix B defined above.

• The Gaussian mixture filter can be seen as a generalisation of the classical
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particle filter, where instead of a δ-distribution a Gaussian around each

prior particle is employed to calculate the posterior distribution and draw

from it. Here, we will employ localisation and adaptivity as developed for

the LAPF in combination with the mixture concept within the LMCPF.

4.1.1 The Localised Adaptive Particle Filtering Ingredi-

ents and Preparations

The goal of this section is to collect, prepare and summarize all components

employed for the LMCPF. For the following derivation we assume linearity of

H, we will discuss the form of the equations in the case of non-linear H later.

Then, we have YT = XTHT and with γ = 1
L−1 the standard estimator for the

covariance matrix is given by B = γXXT . We will later use B as measure of

uncertainty of individual particles, then using the scaling

γ = κ

(L− 1) (4.1.11)

with a parameter κ > 0 scaling the standard covariance matrix. Following stan-

dard arguments as in Hunt et al. (2007); Nakamura and Potthast (2015) or

Potthast et al. (2019), this leads to the Kalman gain

K = BHT (R + HBHT )−1

= γXXTHT (R + γHXXTHT )−1

= γXYT (R + γYYT )−1 (4.1.12)

with invertible observation error covariance matrix R ∈ Rm×m. We note that we

have

(I + γYTR−1Y)YT = YTR−1(R + γYYT ) (4.1.13)

by elementary calculations. We also note that I + γYTR−1Y is invertible on RL

and R+γYYT is invertible on Rm by assumption on the invertibility of R. Then,
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multiplying (4.1.13) by (I + γYTR−1Y)−1 from the left and by (R + γYYT )−1

from the right we obtain

YT (R + γYYT )−1 = (I + γYTR−1Y)−1YTR−1. (4.1.14)

Now, (4.1.14) can be used to transform (4.1.12) into

K = γX(I + γYTR−1Y)−1YTR−1. (4.1.15)

This can be used to calculate the covariance update step of the Kalman filter in

ensemble space as follows. We derive

B(a) = (I−KH)B(b)

=
(

I− γX(I + γYTR−1Y)−1YTR−1H
)
γXXT

= X
(

I− γ(I + γYTR−1Y)−1YTR−1Y
)
γXT

= X
(

(I + γYTR−1Y)−1
[
I + γYTR−1Y − γYTR−1Y

])
γXT

= X(I + γYTR−1Y)−1γXT

= γX(I + γYTR−1Y)−1XT . (4.1.16)

For collecting the formulas we now move back to using X(b) for X. The anal-

ysis ensemble X(a) which generates the correct posterior covariance by B(a) =

γX(a)(X(a))T is given by

X(a) := X(b)
(

I + γYTR−1Y
)− 1

2
∈ Rn×L, (4.1.17)

where the matrix I + γYTR−1Y ∈ RL×L lives in ensemble space, it is symmetric

and invertible by construction, for all γ > 0.

The localized ensemble transform Kalman filter (LETKF) following Hunt et al.

(2007) based on the square root filter for calculating the analysis ensemble can
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be written as

x(a) := x(b) + γX(b)w = x(b) + K(y − y) (4.1.18)

with

w := (I + γYTR−1Y)−1YTR−1(y − y) ∈ RL (4.1.19)

and

X(a) := X(b)W (4.1.20)

with

W := (I + γYTR−1Y)− 1
2 ∈ RL×L. (4.1.21)

The above equations are carried out at each analysis grid point where the ma-

trix R is localized by multiplication of each entry with a localization function

depending on the distance of the variable to the analysis grid point Hunt et al.

(2007). Using

X(a,full) :=
(
x(a,1), ..., x(a,L)

)
= (x(a) + x(a)) ∈ Rn×L (4.1.22)

the full update of the LETKF ensemble can be written as

X(a,full) = x(b) + γX(b)w + X(b)W, (4.1.23)

where we define the sum of a vector (here x(b) or γX(b)w) plus a matrix (here

X(b)W) by adding the vector to each column of the matrix.

For non-linear observation operatorH as in (18) of Hunt et al. (2007) the operator

K is defined by the last line of (4.1.12), see also (4.1.15) and the ensemble

transform by (4.1.20) with W by (4.1.21). This basically corresponds to an

approximate linearisation of H in observation space based on the differences

y(b,`) − y.
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4.1.2 An Elementary Gaussian Filtering Step in Ensem-

ble Space

Let us consider a Bayesian assimilation step (2.1.5) based on the approximation

of the prior p(b)(x) as a Gaussian mixture (4.1.10). We first describe the steps

in general, then derive the ensemble space version of the equations. To each

particle, we attribute a distribution with covariance G, i.e. we define

p(b,`)(x) := 1√
(2π)n det(G)

e−
1
2 (x−x(b,`))T G−1(x−x(b,`)), x ∈ Rn, (4.1.24)

which is normalised according to equation (4.5.28) of Nakamura and Potthast

(2015). Then, the full prior is a Gaussian mixture

p(b)(x) = c
L∑
`=1

c`e
− 1

2 (x−x(b,`))T G−1(x−x(b,`)), x ∈ Rn, (4.1.25)

with c` := 1/
√

(2π)n det(G) (i.e. we choose the variance uniform for all `) and

with some normalisation constant c = 1
L
in this case. Bayes formula leads to the

posterior distribution

p(a)(x) = c̃
L∑
`=1

c`

(
e−

1
2 (x−x(b,`))T G−1(x−x(b,`))e−

1
2 (y−H(x))T R−1(y−H(x))

)
, (4.1.26)

x ∈ Rn, with a normalisation constant c̃, here different from the normalisation

constant in (4.1.25). We note that the terms in round brackets constitute individ-

ual Gaussian assimilation steps. In the case where H is linear or approximated

by its linearisation H, the posterior of each of these terms can be explicitly cal-

culated the same way as for the Ensemble Kalman Filter. Following Nakamura

and Potthast (2015), Section 5.4, we define

x(a,`) := x(b,`) + GHT (R + HGHT )−1(y −H(x(b,`))), ` = 1, ..., L, (4.1.27)
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and

K = GHT (R + HGHT )−1, G(a) := (I −KH)G. (4.1.28)

Then, we know that

q(a,`)(x) = c̃c`e
− 1

2 (x−x(b,`))T G−1(x−x(b,`))e−
1
2 (y−H(x))T R−1(y−H(x))

= c̃c`e
− 1

2 (x−x(a,`))T [Ga]−1(x−x(a,`))e−
1
2 (y−H(x(b,`)))T (HGHT +R)−1(y−H(x(b,`)))

= c̃c`w`e
− 1

2 (x−x(a,`))T [G(a)]−1(x−x(a,`)), x ∈ Rn, (4.1.29)

with constants c` := 1/
√

(2π)n det(G) (see also equation (40) in Schenk et al.

(2022)) and w` given by (4.0.3). Since c` does not depend on `, the constants are

irrelevant for the resampling step and will be removed by the normalisation step.

Note that the constants w`, ` = 1, ..., L, are extremely important, since they

contain the relative weights of the individual posterior particles with respect to

each other. They should not be ignored! Here, we first describe the full posterior

distribution, which is now given by

p(a)(x) = c̃
L∑
`=1

c`w`e
− 1

2 (x−x(a,`))T [G(a)]−1(x−x(a,`)), x ∈ Rn. (4.1.30)

In the case of the classical particle filter, the Gaussians c`e−
1
2 (x−x(b,`))T G−1(x−x(b,`))

become δ-distributions c`δ(x − x(b,`)) with weights c` = 1. In this case, the

individual posterior weights w` are given by the likelihood of observations

w` := e−
1
2 (y−H(x(b,`)))T R−1(y−H(x(b,`))), ` = 1, ..., L. (4.1.31)

This choice will also be a reasonable approximation in the case of small variance

G of the Gaussians under consideration in comparison with the distance y −

H(x(b,`)). In the general Gaussian case, the weights can be calculated from

(4.0.3). For our numerical experiments we use non-zero G with some positive

variance, and tested both the exact weights (4.0.3) or approximate weights wl

given by (4.1.31).
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Figure 4.1: We show a comparison between the normalised approximative
weights calculated as in (4.1.31) versus the normalised exact calculated weights
(4.0.3). The solid lines show the normalised exact determined weights and the
dashed lines the normalised approximative weights. The colors vary for different
ensemble members (L=40). On the x-axis we show the value for κ of equation
(4.1.11), on the y-axis the values of the weights.
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In Figure 4.1 we show a comparison of the normalised approximative weights

(4.1.31) as dashed lines and the normalised exact determined weights (4.0.3) as

solid lines, for a selected point of the full NWP model described in Sections 4.2

and 4.3. Here, each ensemble member (L=40) is described by a different color.

For this plot we varied the parameter κ, described in equation (4.1.11), between

0 and 5. Figure 4.1 shows how the normalised approximative weights differ from

the normalised exact weights. We have carried out experiments both with the

exact and approximate weights, we found that overall the results with exact

weights show a better performance.

Let us now describe the ensemble space transformation of the above equations.

The ensemble space as a subset of the state space is spanned by X given in

(4.1.1). Our approach for the model error covariance is γXXT with some scaling

factor γ. We note that for the LETKF, γ = 1
L−1 . Here, γ > 0 can be any real

number. We will provide some estimates for what γ can be in a global NWP

model setup in our numerical part in Section 4.3. In the transformed space this

leads to the covariance γI ∈ RL×L to be used for the ensemble transform version

of (4.1.26). Recall the ensemble transformation x− x = Xβ, x(`) − x = Xe` and

x − x(`) = X(β − e`) for ` = 1, ..., L, where e` is the standard unit vector with

one in its `-th component and zero otherwise leading to

(x− x(`))T (γXXT )−1(x− x(`)) = (β − e`)Tγ−1XT (XXT )−1X(β − e`)

= (β − e`)Tγ−1I(β − e`). (4.1.32)

We note that XT (XXT )−1X = I is true only on the subspace N(X)⊥, but we

can employ the arguments used to justify equation (15) of Hunt et al. (2007) to

use the covariance γ−1I in ensemble space for the prior term. For the observation
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error term of (4.1.26) in ensemble space RL we use (3.1.3), i.e. we have

q(a,`)(β) = ĉc`e
− 1

2 (β−e`)T (γ−1I)(β−e`)e−
1
2 [P (y−ȳ−Yβ)]T R−1[P (y−ȳ−Yβ)], β ∈ RL,

(4.1.33)

with norming constant ĉ, for ` = 1, ..., L, where P is the orthogonal projection

onto span{Y} with respect to the scalar product in Rm weighted by R−1; it is

defined in (3.1.2) and Lemma 3.2.3 of Nakamura and Potthast (2015) to be given

by

P = Y(YTR−1Y)−1YTR−1. (4.1.34)

As in (3.1.5) - (3.1.7) the right-hand side of (4.1.33) can be transformed into

q(a,`)(β) = ĉc`e
− 1

2 (β−e`)T (γ−1I)(β−e`)e−
1
2 [C−β]T A[C−β], ` = 1, ..., L, (4.1.35)

with

A := YTR−1Y, C := A−1YTR−1(y − y). (4.1.36)

We now carry out (4.1.27) and (4.1.28) in ensemble space based on (4.1.12) and

(4.1.13), leading to the new mean of the posterior distribution for the `-th particle

prior distribution

β(a,`) = e` + γ(I + γYTR−1Y)−1YTR−1Y(C − e`) (4.1.37)

and the new covariance matrix of this distribution

G(a)
ens = ( 1

γ
I + YTR−1Y)−1 ∈ RL×L (4.1.38)

independent of ` when G = γXXT is independent of `. This means that we

obtain

q(a,`)(β) = ĉc`w`e
− 1

2 (β−β(a,`))T G(a)
ens(β−β(a,`)), β ∈ RL (4.1.39)

with β(a,`) given by (4.1.37) and G(a)
ens given by (4.1.38) for the posterior distri-
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bution of the `-th particle in ensemble space. We denote the term

β(shift,`) := γ(I + γYTR−1Y)−1YTR−1Y(C − e`) (4.1.40)

as the shift vector for the `-th particle in ensemble space, i.e. β(a,`) = e`+β(shift,`)

in (4.1.37). The use of the model error γI corresponding to γXXT for this particle

in ensemble space leads to this shift in the analysis. The shift has important

effects:

1. it moves the particle towards the observation in ensemble space,

2. by the use of particle uncertainty, it constitutes a further degree of freedom

which can be used for tuning of a real system.

One of the major advantages and problems at the same time of the LAPF as well

as a classical particle filter is that the particles are taken as they are. If the model

has some local bias, i.e. if all particles have a similar behaviour and do not fit

the observation well, then there is no inherent tool in the classical particle filter

or the basic LAPF to move the particles towards the observation - this move is

only achieved by selection of the best particles, closest to the observation. By

resampling and rejuvenation, effectively the whole ensemble is moved towards the

observation. Here, with the introduction of uncertainty of individual particles

into the assimilation step, this is already carried out for each individual particle

by calculating a posterior mean β(a,`) in (4.1.37) of the posterior component

q(a,`)(β) given by (4.1.39) for the model error prior distribution q(b,`)(x) attributed

to each particle (4.1.24).

4.1.3 Putting it all together: the full LMCPF

Here, we now collect all steps to describe the full LMCPF assimilation step and

data assimilation cycle. The LMCPF assimilation cycle is run analogously to

the LETKF or LAPF assimilation cycle, i.e. we start with some initial ensemble

x
(a,`)
0 at time t0. Then, for time steps tk, k = 1, 2, 3, ... we
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(1) carry out a propagation step, i.e. we run the model forward from time tk−1

to tk for each ensemble member, leading to the background ensemble x(b,`)
k

at time tk.

(2) Then, at each localisation point ξ on a coarser analysis grid G we carry

out the localised ensemble transform (4.1.36), calculating C and A. Lo-

calisation is carried out as for the LETKF and LAPF, i.e. the matrix R

is weighted depending of the distance of each of its observations to the

analysis point.

(3) We now carry out a classical resampling step following Section 3.1.3. This

leads to a matrix

W̆i,` =


1, if R` ∈ (waci−1 , waci

],

0, otherwise,
(4.1.41)

i, ` = 1, ..., L, draw r` ∼ U([0, 1]), set R` = ` − 1 + r`, with accumu-

lated weights wac, wac0 = 0, waci
= waci−1 + wk,i, wk,i := p(yk|x(b,i)) and

W̆ ∈ RL×L defined by (4.1.41) with entries one or zero reflecting the choice

of particles. As for the LETKF and LAPF this is carried out at each lo-

calisation point ξ on a coarser analysis grid G to ensure that the weight

matrices only change on scales on the order of the localisation length scale.

Here, we use W̆ instead of W̆(ξ) for brevity.

(4) The posterior matrix G(a)
ens given by (4.1.38) and the shift vectors β(shift,`)

given by (4.1.40) for ` = 1, ..., L are calculated for each localisation point

ξ. We define

W(shift) :=
(
β(shift,1), ..., β(shift,L)

)
∈ RL×L. (4.1.42)

Then, if we want the shift given by the lth-particle, we obtain it by the

product W(shift)e`. If we have a selection matrix W̆ for which each column

with index ζ, ζ = 1, ..., L, contains some particle e` with ` = `(ζ), which
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has been chosen to be the basis for the corresponding new particle, we

obtain the shifts for these particles by the product W(shift)W̆. According

to the analysis equation (4.1.37) the new coordinates in ensemble space are

calculated by (
β(a,1), ..., β(a,L)

)
= W̆ + W(shift)W̆. (4.1.43)

(5) For each particle we now carry out an adaptive Gaussian resampling or re-

juvenation step. The rejuvenation is carried out the same way as described

in Sections 3.1.4 and 3.1.5, i.e. we first calculate

ρ = dTo−bdo−b − Tr(R)
Tr(H 1

L−1XXTHT ) (4.1.44)

at each localisation point, with the actual ensemble covariance matrix
1

L−1XXT and with the observation minus background statistics do−b =

yk− ȳk where ȳk denotes the ensemble mean in observation space described

in (4.1.4) at time tk2. Then we scale ρ by some function

σ(ρ) :=


c0, ρ < ρ(0),

c0 + (c1 − c0) ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1),

c1, ρ > ρ(1),

(4.1.45)

where the constants ρ(0), ρ(1), c0, c1 are tuning constants. We note that

temporal smoothing is applied to ρ as usual for LETKF or LAPF. Let

N ∈ RL×L be a matrix with entries drawn from a normal distribution,

i.e. each entry is taken from a Gaussian distribution with mean zero and

variance 1. This is chosen uniformly for all localisation points ξ on the

analysis grid G. Then, the rejuvenation plus shift step is carried out by

W := W̆ + W(shift)W̆ + [G(a)
ens]

1
2 Nσ. (4.1.46)

2The R matrix is taken from operations, where it is estimated based on standard Desrozier
statistics. Usually ρ is kept between a minimal and maximal positive value, e.g. 0.7 and 1.5
for operations to account for statistical outliers in the estimator.
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Again, we note that W = W(ξ), W(shift) = W(shift)(ξ), W̆ = W̆(ξ),

[G(a)
ens]

1
2 = [G(a)

ens]
1
2 (ξ) and σ = σ(ξ) are functions of physical space with

ξ ∈ G chosen from the analysis grid G.

(6) The matrices W are calculated at each analysis point ξ on a coarser global

analysis grid G. We now interpolate the matrices onto the full model grid

Gmodel.

(7) Finally we calculate the analysis ensemble (4.1.22) by

X(a,full) = x(b) + X(b)W (4.1.47)

= x(b) + X(b)W̆︸ ︷︷ ︸
class. resampling

+ X(b)W(shift)W̆︸ ︷︷ ︸
shift

+ X(b)[G(a)
ens]

1
2 Nσ︸ ︷︷ ︸

adapt. Gauss. resampling

Comparing (4.1.47) with (4.1.23) we observe some similarities and some differ-

ences. The LETKF does not know the selection reflected by the matrix W̆,

instead it transforms the ensemble by its matrix W. Both know a shift term,

for the LETKF it is given by w, for the LMCPF by W(shift)W̆, shifting each

particle according to model error (here taken proportional to ensemble spread),

where the LETKF shifts according to the full ensemble spread. The LMCPF also

takes into account that part of the ensemble spread which is kept during the se-

lection process. Further, it employs adaptive resampling around each remaining

shifted particle. This helps to keep the filter stable and achieve an appropriate

uncertainty described by o− b statistics.

4.2 Experimental Environment: the Global ICON

Model

4.2.1 The ICON Model

We have carried out experiments testing the LMCPF algorithm in the global

ICON model, i.e. the operational global NWP model of DWD, compare Zängl
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et al. (2014) for further details on the systems. ICON is based on an unstruc-

tured grid of triangles generated by subdivision from an initial icosahedron. The

operational resolution is 13 km for the deterministic run and 26 km for the en-

sembles both for the data assimilation cycle and the ensemble prediction system

(EPS). The upper air prognostic variables such as wind, humidity, cloud water,

cloud ice, temperature, snow and precipitation live on 90 terrain-following verti-

cal model levels from the surface up to 75 km height. In the operational setup,

we have 265 million grid points. We also note that there are further prognostic

variables on the surface and on eight soil levels, in particular soil temperature

and soil water content, as well as snow variables, sea ice fraction, ice thickness

and ice surface temperature of ICON’s integrated sea-ice model.

The data assimilation for the operational ensemble is carried out by an LETKF

based on Hunt et al. (2007). We run a data assimilation cycle with an analysis

every 3 hours. Forecasts are calculated based on the analysis for 00 and 12 UTC,

with 180 hours forecast lead time. For the operational system, forecasts with

shorter lead times of 120 hours for 06 and 18 UTC and 30 hours for 03, 09, 15

and 21 UTC are calculated. The ensemble data assimilation cycle is run with

L=40 members.

For the experimental setup of our study, we employ a slightly lower horizon-

tal resolution of 52 km for the ensemble and 26 km for the deterministic run

(in the operational setup a part of the observations quality control is carried

out within the framework of the deterministic run, we keep this feature for our

particle filter experiments). An incremental analysis update with a window of

t ∈ [−90 min, 90 min] around the analysis time for starting the model runs is

used. The analysis is carried out for temperature, humidity and two horizontal

wind components, i.e. for four prognostic variables per grid point. This leads

to n = 6.6 · 106 free variables at each ensemble data assimilation step. Fore-

casts are only carried out for 00 and 12 UTC. We employ L=40 members for

the experimental runs as well. As we want to be able to compare the LMCPF
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with the LAPF and take into account the latest improvements in the operational

setup, we have run the LMCPF for two experimental periods - May 2016 for the

comparison with the LAPF and January 2022 for the comparison with the newer

near operational setup of the ICON model.

4.2.2 Comparison in an Operational Framework

For testing and developing algorithms in the operational framework, the tuning

of basic algorithmic constants is a crucial part. The task of testing in a real-

world operational setup is much more intricate than for what is usually done

when algorithms are compared in a simulation-only small-scale environment. In

particular for new algorithms, the whole model plus assimilation cycled NWP

system needs a retuning and it is difficult to compare one algorithmic layer only

within a very complex system with respect to its performance. To compare two

algorithms A and B, there are two important points to be taken into account:

(1) Tuning Status of the Methods. There might be a raw or default version

of the algorithms, but when you compare scores with the task of showing

that some algorithm is better than the other, you need to compare tuned

algorithms. In principle, you have to tune algorithm A to give the best

results and then you have to tune algorithm B to give the best results and

then compare the results of tuned A and tuned B. If A has been tuned

for several years, but B is raw, the results give you insight into the tuning

status of A and B, but not necessarily of the algorithms as such! So we

have to be very careful with generic conclusions.

(2) Quality Control of Observations. When you compare two algorithms

for assimilation or two models, verification provides a variety of scores.

But verification with real data needs quality control of these data, since

otherwise scores are mainly determined by outliers, and one broken device

can make the whole verification result completely useless. But how is the

data quality controlled? Usually we employ observation minus first guess
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(o−f) statistic and remove observations which are far away from the model

first guess. This leads to an important point: each algorithm A and B needs

to use its own quality control. If model biases change between A and B,

you will have a different selection of ’good’ observations.

But how do you compare two systems which employ different observations?

One solution can be to use observations for comparison which passed both

quality controls. A second method is to verify each algorithm separately

and then compare the scores (this is what is done with World Meteorolog-

ical Organization (WMO) score comparisons between global models). A

third method is to try to use ’independent’ observations. But these also

need some quality control, and since they are not linked to any of the fore-

casting systems, it is unclear in what way their use in verification helps to

judge a particular algorithm or to compare two algorithms.

For our experiments, we compare the LMCPF with the LAPF and the LETKF.

The LETKF has a relatively advanced tuning status. LAPF has been mildly

tuned and the LMCPF is relatively new. We carried out several tuning steps

to try to make LMCPF and LETKF comparable. Further, we employ quality

control for the observations in each system separately. Verification of the o− f

statistics is based on each system independently. Here, one important perfor-

mance measure is the number of observations which passes the quality control.

If these number is larger for B than for A, we can conclude that the system fits

better to the observations, which is a good indicator for the quality of a short-

range forecast. For comparison of forecasts the joint set of observations is used,

those which pass both the quality control of algorithm A and algorithm B.

4.3 Numerical Results

The goal of this numerical part is, firstly, to investigate the relationship between

the observation vector mapped into ensemble space and the ensemble distribu-
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tion. Secondly, we show since the LMCPF moves particles based on the Gaussian

uncertainty of individual particles, it bridges the gap between forecast ensemble

and observations. Furthermore we study its distribution. The third part shows

results of observation - first guess (o-f) statistics for the LMCPF with differ-

ent choices for κ > 0 compared to the LETKF and the LAPF. Fourthly, we

investigate the evolution of ensemble spread with different parameter settings.

In the last part we demonstrate the feasibility of the LMCPF as a method for

atmospheric analysis and subsequent forecasting in a very high-dimensional op-

erational framework, demonstrating that it runs stably for a month of global

atmospheric analysis and forecasting.

4.3.1 Distributions of Observations in Ensemble Space

In a first step, we study (a) the distance between the observation and the en-

semble mean and (b) the minimum distance between the observation and the

ensemble members. In ensemble space, for distance calculations an appropriate

metric needs to be used. Recall that Rm with dimension m is the observation

space and RL with dimension L the ensemble space. Given a vector β ∈ RL in

ensemble space, the distance corresponding to the physical norm ‖·‖R−1 in ob-

servation space, which is relevant to the weight calculation of the particle filter,

is calculated by

‖Yβ‖2
R−1 = 〈Yβ,Yβ〉R−1

= 〈Yβ,R−1Yβ〉

= (Yβ)TR−1Yβ

= βT (YTR−1Y)β

= 〈β,Aβ〉

= ||β||2A (4.3.1)
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where 〈·, ·〉 denotes the standard L2-scalar product in Rm or RL, respectively.

The notation 〈·, ·〉D with some positive definite matrix D denotes the weighted

scalar product 〈·,D ·〉 and ‖·‖D = 〈·, ·〉D, here with either R−1 in Rm or A in

RL. Note that for A to be positive definite we need L ≤ m.

The matrix A including the standard LETKF localisation in observation space

has been integrated into the data assimilation coding environment. Here, we

show results from an LMCPF one month experiment studying one assimilation

step at 0 UTC of May 6, 2016. The cycle has been started May 1, such that the

results illustrate a situation where the spin-up period is over and LMCPF spread

has reached a steady state (compare Figure 4.8).

At each analysis grid point ξ of some coarse global analysis grid G we have

a matrix A (see Eq. (4.1.36)), L = 40 ensemble members and one projected

observation vector C ∈ RL (see Eq. (4.1.36)). This leads to a total ofNω = 10890

samples ω numbering the analysis grid points in a given height layer, e.g. for 850

hPa. The distance of the observations to the ensemble mean is given by

dC(ω) := ‖C(ω)‖A(ω), (4.3.2)

where the metric A is chosen to be consistent with (4.1.35). The minimal distance

of the observations vector to the ensemble members is given by

dmin(ω) := min
j=1,...,L

‖C(ω)− ej‖A(ω), (4.3.3)

with ω = 1, ..., Nω, where we employed (4.3.1) and where we note that in ensemble

space the ensemble members x(b,j) − x are given by the standard unit normal

vectors ej, j = 1, ..., L.

To analyse the role of moving particles towards the observation in ensemble

space, in Figure 4.2 we show global histograms for dC and dmin for three height

levels of approximately 500 hPa, 850 hPa and 1000 hPa. When the distribution

of both dC and dmin are similar, i.e. the distribution of the minimal distance of
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Figure 4.2: We show global histograms of dC and dmin defined in (4.3.2) and
(4.3.3) for three different pressure levels: 500 hPa in (a) and (d), 850 hPa in
(b) and (e) and 1000 hPa in (c) and (f), with dC in (a)-(c) and dmin in (d)-(f).
Shown are statistics for the LMCPF with κ = 25 for May 6th, 0 UTC.

the observation to the ensemble members and the distribution of the distance of

observations to the ensemble mean are comparable, it indicates that we have a

well-balanced system. To understand the particular form of the distributions, we

compare it with simulations of random draws of a Gaussian distribution in a 40

dimensional space shown in Figure 4.3. When you draw from a Gaussian with

mean zero and standard deviation σ = 4, we obtain Figure 4.3 (a). The behaviour

of the histograms of the norms of the points drawn changes significantly if we

consider mixtures with different variances in different space directions. Figure

4.3 (a)-(e) shows different distributions with variances given by

σj = η

jν
, j = 1, ..., L (4.3.4)

where the constant η ∈ (4, 15, 30, 40, 50) has been chosen to achieve a maximum

around 4 and different decay exponents ν ∈ (0, 0.5, 1, 2, 3) have been tested.

The distributions of Figure 4.2 correspond to a decay exponent between ν = 1

and ν = 2. How much is this reflected by the eigenvalue distributions for the

matrices A? We have carried out a fit to the eigenvalue decay of A for a selection
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Figure 4.3: We show simulations of distributions of random draws in an L = 40
dimensional space, with different mixtures of variances given by formula (4.3.4),
here with η ∈ (4, 15, 30, 40, 50) and ν ∈ (0, 0.5, 1, 2, 3) in (a) to (e). A histogram
of the fit of exponents ν as in (4.3.4) to the eigenvalue decay of the matrices A
for a selection of 1000 points is shown in (f). The fit is obtained from the mean
of exponents derived from formula (4.3.5).

of analysis points. The constant η is obtained by using j = 1, which leads to

σ1 = η. Taking the logarithm on both sides now yields

ν log(j) = log(η)− log(σj), j = 2, ..., L. (4.3.5)

A fit of ν can be obtained for example by division through log(j) and taking

the mean of the remaining right-hand side. The distribution of the resulting

exponents is displayed in Figure 4.3 (f). The results find exponents between

0.7 and 2.2. The corresponding distributions are those shown in Figure 4.3(c)

and (d), which are quite close to the distributions of dC found in the empirical

particle-filter generated NWP ensemble in Figure 4.2.

4.3.2 The Move of Particles

At a second step, we want to investigate the capability of the LMCPF to move

particles towards the observation by testing different choices of κ > 0 given by
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(4.1.11). In Figure 4.4 we compare histograms of the norm of the mean ensemble

shift in ensemble space for pressure level 500 hPa, determined for May 6th, 0

UTC. The four histograms show the statistics for the three filters in different

settings: a) LAPF, b) LMCPF with κ = 1, c) LMCPF with κ = 2.5 and d)

LMCPF with κ = 25.

Figure 4.4: We show global histograms of the norm of the mean ensemble shift
at pressure level at 500 hPa. On the x-axis we show the norm of shift of mean
vectors in ensemble space and on the y-axis we show the frequency. We display
the histogram for (a) the LAPF, (b) the LMCPF with κ = 1, (c) the LMCPF
with κ = 2.5 and (d) shows the LMCPF with κ = 25. The pink line displays the
median, which is also shown on the top of each plot. Shown are the statistics for
May 6th, 0 UTC.

There are two effects seen in Figure 4.4. First, we see the distribution of average

shifts or moves of the ensemble mean generated by the LAPF and the LMCPF

with three different choices κ controlling the size of the uncertainty used for each

particle. The mean shift increases if the uncertainty increases, i.e. from κ = 1

to κ = 2.5 and κ = 25. To develop an understanding of the relative size of this

shift let us look at the one-dimensional version of formula (4.1.40) given by

s(κ) = κb

r + κb
, (4.3.6)
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Figure 4.5: We show scatter and density plots of the average particle move versus
the distance of the observation vector to the ensemble mean, all for the pressure
level 500 hPa in ensemble space. On the x-axis we can see the norm of the
observation distance to ensemble mean and on the y-axis we show the average
size of the corresponding particle move. We display statistics for the LMCPF
with different particle uncertainty, for each setting a scatter plot and a density
plot which shows high density of points in a better way. (a) and (d) show the
statistics for κ = 1, (b) and (e) for κ = 2.5 and (c) and (f) for κ = 25, all for
May 6th, 0 UTC.

with background variance b and observation error variance r, reflecting the size

of the particle move. When we, for example, choose r = 4 and b = 16, as we

would get with typical values for the error of 2 m
s
for wind measurements and an

ensemble standard deviation of 4 m
s
, and then study κ ∈ (1, 2.5, 10, 25), we obtain

factors of size s(κ) ∈ (0.8, 0.9, 0.97, 0.99). If the observation has a distance of 3.6

to the ensemble mean, as seen in Figure 4.2, this would make the means observed

in Figure 4.4 plausible. For small κ = 1 here the particle move is 0.8 times the

innovation, for large κ = 25 it is 0.99 times the innovation y−H(x(b)). In Figure

4.4 we observe this behaviour with the median of the ensemble increments being

median = 2.62 in (a) to median = 3.54 in (d).

As a final step of this part, we want to investigate not only the overall distribution

of the particle moves, but relate the size of the average particle move to the

distance of the observation to the ensemble mean. Figure 4.5 shows scatter and

density plots for the LMCPF with different particle uncertainty. We employ
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the same values for κ as in Figure 4.4, (a) and (d) with κ = 1, (b) and (e)

with κ = 2.5, (c) and (f) show results for κ = 25. Displayed are statistics for

the average particle move vs. the difference of the observation vectors from the

ensemble mean, all for the pressure level at 500 hPa.

The results of Figure 4.5 show that clearly the move of the particles is related

to the necessary correction as given by the distance of the observation to the

individual particle. There is a clear correlation of the average move to the obser-

vation discrepancy with respect to the ensemble mean. If we would investigate

each particle individually in one dimension, all points would be on a straight

line with slope given by (4.3.6). The situation in a high-dimensional space with

non-homogeneous metric is more complicated as reflected by Figure 4.5. The

figure confirms that the method is working as designed.

4.3.3 Assimilation Cycle Quality Assessment of the LM-

CPF

Here, studying standard global atmospheric scores for the analysis cycle we inves-

tigate the quality of the LMCPF by testing different choices of κ > 0, investigate

the interaction effects between particle uncertainty, ensemble spread and adap-

tive spread control and compare it to the way the LETKF moves the mean of

the ensemble. For this aims we show two figures.

Figure 4.6 shows the functionality of the LMCPF by a display of the analysis and

the first guess errors for upper air temperature for an ICON assimilation step,

comparing the LETKF and the LMCPF with exact and approximate weights,

respectively. Here, in the first line we show statistics for the LMCPF (blue line)

with exact weights and κ = 2.5 compared to the LETKF (red line). The left

panel shows the number of observations which passed quality control, the middle

panel shows the root mean square error (RMSE) of observation minus first guess

statistics (o− f) (also known as observation - background (o− b) statistics) and

the right panel shows the RMSE for observations minus analysis statistics (o−a).
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Figure 4.6: We show the observation verification of upper air temperature mea-
sured by aircrafts, in particular the first guess and analysis scores. The three
columns show the number of observations which passed quality control, the
RMSE for o − f statistics and the RMSE for o − a statistics for the LMCPF
with exact weights (blue line) compared to the LETKF (red line) in the first row
and the LMCPF (blue line) with exact weights compared to the LMCPF with
approximate weights (red line) in the second row. We display results for one
global assimilation step at 01.01.2022 00 UTC.

The blueish shading shows areas with lower values for the LMCPF in comparison

to the LETKF. The second row shows the comparison of the LMCPF with exact

(blue lines) and approximate (red lines) weights.

It can clearly be seen that with respect to o − f scores the LMCPF is able

to outperform the LETKF in case studies with one assimilation step when an

appropriate size of the uncertainty of each particle, here given by the size of κ, is

found. The experiments demonstrate that the exact weights yield better results

than the approximate weights.

The numerical experiments prove that the particle uncertainty enables the LM-

CPF to move the background ensemble towards the observation in a way com-

parable to or even better than the LETKF. This effect remains active during

model propagation and can also be observed for the first guess statistics and for

forecasts with short lead times. Here, the LMCPF is able to outperform the

operational version of the LETKF.

In Figure 4.7 we show a comparison of analysis cycle verification for a full one
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Figure 4.7: Again, we show some observation verification statistics for upper air
temperature measured by aircrafts. We show the same statistics as in Figure 4.6
but for experiments carried out for the period one month each. In the upper row
the comparison between LETKF (red line) and LMCPF (blue line) with exact
weights is shown for Jan 2022, in the lower row we show the comparison between
LAPF (red line) and LMCPF (blue line) in May 2016.

month period of LMCPF, LAPF and LETKF experiments. The columns are

showing the same statistics as in Figure 4.6. The first row in Figure 4.7 shows

the differences between LETKF (red line) and LMCPF with exact weights and

κ = 2.5 (blue line) for a full month of cycling (Jan 2022). The second row shows

the comparison of LAPF (red line) and LMCPF with approximate weights and

κ = 2.5 (blue line) for one month (May 2016). Again, the blueish shading indi-

cates lower numbers or RMSE values for the experiment (LMCPF), the yellowish

shading indicates lower values for the reference (LETKF resp. LAPF).

Row one shows that the LMCPF with particle uncertainty given by κ = 2.5

can outperform the LETKF for short lead times, which is very important for

practical applications. Here the LMCPF is up to 2.5% better than the LETKF

for the o− f statistics. In this experiment, for some levels in the atmosphere the

o− a and o− f statistics of the LMCPF are up to 0.5% worse than the LETKF.

The amount of data which passes quality control is quite similar for all methods

under consideration, however, at some levels we loose up to 1.1% of observations

in comparison with the LETKF. This is an effect of quality control based on the

78



ensemble spread - a smaller ensemble spread as we observe for the particle filter

leads to less observations passing quality control. In the second row of Figure

4.7 we show the statistics of LAPF vs. LMCPF. Here we can clearly see that the

LMCPF shows much better upper air scores than the LAPF. It clearly shows

the importance of allowing a movement of particles towards the observations by

using particle uncertainty.

Overall we conclude that with respect to the verification of the analysis cycle the

LMCPF with particle uncertainty given by κ = 2.5 is comparable to the LETKF,

with some levels to be better, some to be worse, overall differences mostly below

3%. The upper air verification for the analysis cycle of the LMCPF in operational

setup is more than 10% better than for the LAPF.

4.3.4 The Evolution of the Ensemble Spread

It is an important evaluation step to investigate the stability of the LMCPF

for global NWP over longer periods of time. We compare the particle spread

evolution of the LMCPF, the LAPF and the LETKF in Figure 4.8. All experi-

ments were started with an ensemble which consists of 40 identical copies of the

particles, i.e. with an ensemble in degenerate state. Thus, here the tests also

evaluate the capability of the whole system to resolve degeneracy and return to

an ensemble with reasonable stable spread.

In a sequence of experiments we have tested the ability of the LMCPF to reach

and maintain a particular ensemble spread using a combination of the choice of

κ with a posterior covariance inflation

G̃(a)
ens = κpostG(a)

ens (4.3.7)

for each particle with G̃(a)
ens replacing G(a)

ens in equation (4.1.47), which is used

to generate the analysis ensemble by random draws. We also note that for the

random draw of equation (4.1.45) we employed bounds given by c0 and c1. The
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Figure 4.8: The evolution of the ensemble spread is shown for three filters and six
different parameter choices for the LMCPF for a time period of both one month
(LETKF - black, LAPF - blue, LMCPF - red) and for one week for different
parameter choices for the LMCPF (see Table 4.1). The x-axis shows the period
in one day steps. The y-axis shows the upper air temperature at ICON model
level 64 (≈ 500 hPa) in Kelvin. The first row shows the mean of the spread, the
second row the minimum and the third row the maximum.
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Exp No. κ κpost c1 ρ(1)

2 0.5 5 0.5 1.5
3 0.5 3 0.5 1.5
4 0.3 5 0.5 1.5
5 1 1 0.3 3.0
6 0.5 3 0.5 3.0
7 0.3 5 0.5 3.0

Table 4.1: Parameter choices for the six one week experiments of Figure 4.8.
Further, we used c0 = 0.02 and ρ(0) = 1.0 for all experiments.

parameter combinations chosen for six different experiments over one week are

compiled into Table 4.1. The corresponding spread evolution is visualised in

Figure 4.8. The results show that, starting with an initial ensemble of identical

particles, after some spin-up phase of 2-3 days all particle filters reach their

particular spread level and keep it stable over a longer period of time. We

carried out selected longer term studies comparing the behaviour of the LMCPF

(red), the LAPF (blue) and the LETKF (black) over a period of one month.

The control of the ensemble spread is a delicate topic. A larger ensemble spread

does not necessarily lead to better forecast scores, measured by RMSE (Skill) of

the ensemble mean or its standard deviation (SD), defined as the RMSE after the

bias has been subtracted. With the ability to control separately the strength of

the adaptive resampling and the ability of the filter to pull the particles towards

the observations, we have independent parameters at hand to adapt the approx-

imations to a real-world situation. At the same time, the way the assimilation

step of the LMCPF pulls the ensemble to the observations is based on both the

size of the particle uncertainty, which itself is depending on the ensemble spread,

and within the cycled environment on the adaptive resampling. Of course, it

would be desirable to develop tools to estimate the real uncertainty adequate

for each particle, and to keep all parts of the system consistent. We expect this

to lead to much further research and discussions, which are beyond the scope of

this work.
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4.3.5 Forecast Quality of the LETKF and LMCPF exper-

iments

As the last part of the numerical results, we study the quality of longer forecasts

based on the analysis cycle of the LMCPF with κ = 2.5 and compare it to

the LETKF based forecasts in Figure 4.9 and to forecasts based on the LAPF

analysis cycle in Figure 4.10. For this purpose, forecasts were run twice a day

at 00 UTC and 12 UTC. In Figure 4.9 we display upper air verification for the

LMCPF (dashed lines) with exact weights and for the LETKF (solid lines). The

different colors identify the different lead times, from one day up to one week.

The first row shows the upper air temperature and the second row shows the

verification of pressure forecasts. The first panel shows the Continuous Ranked

Probability Score (CRPS), the second panel the Standard Deviation (SD), the

third panel the Root Mean Square Error (RMSE) and the last panel shows the

Mean (ME). For CRPS, SD and RMSE it is the aim to receive statistics as low

as possible; for the Mean (=Bias) it is the goal to reach zero. We used the same

observations for verification in both experiments.

Studying the results shown in Figure 4.9, we observe that forecast scores are very

similar for LMCPF and LETKF for the upper air temperature. For pressure

forecast the bias (ME) for the LMCPF is mostly smaller than for the LETKF

below 50hPa.

In Figure 4.10 we show the same statistics as in Figure 4.9 focussing on relative

humidity and upper air temperature for the comparison of LMCPF and LAPF,

where here we used the approximate weights or both to study the effect of the

shifts only. Here, it can be clearly seen that the LMCPF shows lower RMS errors

than the LAPF for both variables and for all levels. For relative humidity the

LMCPF is clearly better for the shorter lead times up to three days, but with

less prominence it still outperforms the LAPF for the longer lead times up to

one week. For the upper air temperature the RMSE statistics are clearly better

for the LMCPF for all lead times. It is worth noting that the biases for the two
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Figure 4.9: We display forecast scores for the LMCPF (dashed) with exact
weights and the LETKF (bold lines) calculated for January 2022. Shown are
the continuous rank probability score (CRPS), the standard deviation (SD), the
RMSE and the mean (ME). First row shows the upper air temperature, the sec-
ond row shows pressure forecast verification. The colors indicate the different
lead times from one day to 7 days.

83



Figure 4.10: Exemplary for relative humidity and upper air temperature we show
the improvement of the LMCPF with approximate weights (dashed) compared
to the the LAPF (bold lines) for May 2016.

particle filters show a quite similar behaviour.

These results altogether demonstrate that using particle uncertainty is an im-

portant ingredient for improving first guess and forecast scores of the particle

filter.

4.4 Conclusions

In this work we develop the use of a Gaussian mixture within the framework of

the Localized Adaptive Particle Filter (LAPF) introduced in chapter 3, as an

approximation to model and forecast particle uncertainty in the prior and pos-

terior distributions. The filter, following earlier ideas of Hoteit et al. (2008) and

Liu et al. (2016a,b) constructs an analysis distribution based on localised Gaus-

sian mixtures, whose posterior coefficients, covariances and means are calculated

based on the prior mixture given by the ensemble first guess and the observa-
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tions. The analysis step is completed by resampling and rejuvenation based on

the LAPF techniques, leading to a Localised Mixture Coefficients Particle Filter

(LMCPF). In contrast to the LAPF the LMCPF is characterised by a move or

shift of the first guess ensemble towards the observations, which is consistent

with the non-Gaussian posterior distribution based on a Bayesian analysis step,

and where the size of the move is controlled by the size of the uncertainty of

individual particles.

We have implemented the LMCPF in the framework of the global ICON model

for numerical weather prediction, operational at Deutscher Wetterdienst. Our

reference system to test the feasibility of ideas and demonstrate the quality of the

LMCPF is the LETKF implementation operational at DWD, which generates

initial conditions for the global ICON Ensemble Prediction System ICON-EPS.

We have shown that the LMCPF runs stably for a month of global assimilations

in operational setup and for a wide range of specific LMCPF parameters. Our

investigation includes a study of the distribution of observations with respect

to the ensemble mean and statistics of the distance of ensemble members to the

projection of the observations into ensemble space. We also study the average size

of particle moves when uncertainty is employed for individual Gaussian particles

within the LMCPF and provide an analytic explanation of the histogram shapes

with a comparison to the eigenvalue distribution of the matrices A on which the

particle weights are based.

We show that the upper air first guess errors of the LMCPF and LETKF during

the assimilation cycle are very similar within a range of plus-minus 1-3%, with

the LMCPF being better below 850 hPa and the LETKF being better in some

range above. Forecast scores for a time-period of one month have been calculated,

demonstrating as well that the RMSE of the ensembles is comparable for upper

air temperature, relative humidity, wind fields and pressure (2-3%). The size of

the mean spread of the LMCPF strongly depends on parameter choices and is

usually stable after a spin-up period.
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In several shorter case studies we demonstrate that by varying the parameter

choices, we can achieve better first guess RMSE for the LMCPF in comparison

to the LETKF, which shows that for very short range forecasts the quality of

the method can be comparable to or better than that of the LETKF. While

reaching a break-even point for operational scores with a new method establishes

an important mile-stone, we need to note that there are many open and intricate

scientific questions here with respect to the choice of parameters for the Gaussian

mixture and their inter-dependence as well as about the control of an optimal

and correct ensemble spread both in the analysis cycle and for the forecasts.
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Chapter 5

Interpretation of the LMCPF

This chapter will show that the LMCPF of chapter 4 in the case of Gaussian

mixtures can be interpreted as Implicit Equal-Weights Particle Filter (Zhu et al.,

2016).

5.1 Interpretation of the LMCPF - The Localised

Implicit Equal-Weights Particle Filter

The Implicit Equal-Weights Particle Filter (IEWPF) of Zhu et al. (2016), which

we were working with since the beginning of the particle filter development,

is another promising particle filter version. During the work on this thesis we

investigated the following: The Localised Mixture Coefficients Particle Filter

(LMCPF) can be interpreted as a special case of the IEWPF where the proposal

distribution is used to draw from an analytical posterior distribution. In partic-

ular, we replace q(ξj) in equation (5.1.4) with p(y|αjξj)p(αξj). It then reduces

to 1/p(y). In this case by construction we obtain equal weights with α = 1.

During the following sections we will now present the details, starting with the

basic idea of the IEWPF, investigating a Newton method and showing results

for a one dimensional example to transparently demonstrate the IEWPF and its

special case.
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5.1.1 The basic idea of the Implicit Equal-Weights Parti-

cle Filter (IEWPF)

The Implicit Equal-Weights Particle Filter (IEWPF) of Zhu et al. (2016) employs

the use of a proposal distribution to draw from the posterior. The basic idea is

to make the proposal distribution dependent on a parameter α and then choose

α such that the posterior weights of the particles become equivalent.

In more detail, the Bayesian step to calculate the posterior distribution is given

by

p(x|y) = p(y|x)p(x)
p(y) (5.1.1)

with the prior distribution p(x), the probability p(y) of the observation which

serves as a norming constant and the conditional likelihood p(y|x) of the obser-

vation given the model state x. When we draw from a proposal distribution q(x),

the equation (5.1.1) becomes

p(x|y) = p(y|x)p(x)
p(y)q(x) · q(x). (5.1.2)

When we scale q(x) by a constant α, we obtain

p(x|y) = p(y|x)p(x)
p(y)q( x

α
) · q(

x

α
). (5.1.3)

In the case where q is a Gaussian distribution and the random draw is given by

ξ, the corresponding draw from q( x
α

) is given by αξ where ξ is drawn from q(x).

Its probability with respect to q( x
α

) is given by q(ξ).

Let us assume that we draw from q( x
αj

) for j = 1, ..., L, with L is the number of

particles, i.e. we obtain the posterior weight wj of αjξj to be

wj = p(y|αjξj)p(αjξj)
p(y)q(ξj)

, j = 1, ..., L. (5.1.4)

The Implicit Equal-Weights Particle Filter now solves the equation system (5.1.4)
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with respect to α = (α1, ..., αL) such that w1 = ... = wL.

5.1.2 A Newton Method for the IEWPF

We employ a Newton method for solving (5.1.4). To this end, let us write the

equation system in the form

Fj(αj, w) := p(y|αjξj)p(αjξj)
q(ξj)

− w, j = 1, ..., L, (5.1.5)

where we removed the unknown normalization factor p(y). If the probability

distributions p(x) and p(y|x) are continous in x and nonzero, for sufficiently

small w the equation 5.1.5 for j = 1, ..., L do have a solution Fj(αj, w) = 0,

which follows from the intermediate value theorem applied to the interval between

minimal and maximal values of the function Fj(α) := p(y|αξj)p(αξj)
p(y)q(ξj) .

Newton’s method searches for zeros of a function, i.e. now we solve

Fj(αj, w) != 0, j = 1, ..., L (5.1.6)

by linearisation and iteration. We linearise at an iteration point α(i)
j with itera-

tion index i to obtain

Fj(αj, w(i)) ≈ Fj(α(i)
j , w

(i)) + dFj(αj, w(i))
dαj

(
αj − α(i)

j

)
(5.1.7)

!= 0 (5.1.8)

Solving the Newton equation leads to the update

α
(i+1)
j = α

(i)
j −

(
dFj(αj, w(i))

dαj

)−1
Fj(α(i)

j , w
(i)) (5.1.9)

for all particles with index j = 1, ..., L.

Solving (5.1.4), the weight w will finally be identical to w = 1
L
. However, since

p(y) is usually not known, we cannot calculate the exact function F . Usually, F
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is known only up to a constant, which is calculated by normalisation using the

weights of all particles, i.e.

p(y) =
L∑
j=1

wj. (5.1.10)

with wj given in equation (5.1.4).

This leads to

w = 1
L

L∑
j=1

wj, (5.1.11)

which we employ in our Newton method.

The calculation of the derivative can be done analytically when the functions

p(y|x) and the prior p(x) is given analytically, for example in the case where

we study a Gaussian mixture approach. In general, we can employ numerical

differentiation by e.g. finite differences.

5.1.3 A one-dimensional example of the IEWPF analysis

step

For study and working towards a full-scale implementation of a localised IEWPF

in the large-scale framework of the ICON model, here we study a one-dimensional

example in detail. In Figure 5.1 we show the prior distribution p(x) in blue and

the likelihood p(y|x) in green for our 1d example. The blue dashed curve shows

the probability density function, the blue dots below the curves are the particles

drawn from this function and the blue solid curve shows the histogram of this

particles plotted as a curve. The vertical blue solid line indicates the mean of the

distribution. The green solid curve shows the data distribution p(y|x) with its

mean indicated by the vertical solid green line. The vertical green and blue lines

are also shown in Figure 5.2 where the analysis x(a), i.e. the mean of the posterior,

is shown as vertical orange line. The dashed orange curve shows the posterior

analytically calculated in the case of Gaussian prior and Gaussian likelihood.

The IEWPF starts with draws from a Gaussian distribution with variance σ = 1

centered at x(a). Here, we carry this out and display the result as magenta
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Figure 5.1: Shown is the prior distribution (p(x)) in blue and the likelihood
(p(y|x)) in green. The probability density function is shown as blue dashed
curve, the blue dots below indicate the particles drawn from this function and
the blue solid curve shows the histogram of the particles. The vertical lines
indicate the corresponding mean.

Figure 5.2: Shown are the mean of the prior (blue) and the data distribution
(green) and the mean of the posterior distribution (vertical solid orange line).
The dashed orange curve shows the posterior distribution x(a).
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Figure 5.3: The magenta dots show the result of drawing with the IEWPF from
a Gaussian with it’s centre at the analysis x(a) (vertical solid orange line). The
magenta curve shows the histogram of this magenta points. The dashed black
curve shows the posterior distribution after drawing with the IEWPF from the
proposal, with matching particles as black dots below.

points. Their histogram is shown as dotted magenta curve in Figure 5.3. Next,

we use Newton’s method to determine α and then use the IEWPF to draw from

the proposal distribution with the determined α′s for each particle and get the

dashed black line - the posterior distribution determined by the IEWPF, the

black dots below the curves are indicating the particles.

Finally, in Figure 5.4 we show all curves in one plot for a better comparison.

In Figure 5.5 we now modify the proposal distribution of the IEWPF and draw

from the analytical version of the posterior calculated for Gaussian mixtures. In

this case, we employ

q(x) := p(y|x)p(x), x ∈ R. (5.1.12)
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Figure 5.4: Shown are all statistics of Figures 5.1 to 5.3 in one plot for a better
comparison.
Again, blue indicates the prior distribution, green the likelihood distribution,
orange the analysis, magenta the proposal distribution and black indicates the
posterior distribution.

This means that the weights we calculate for αjξn are given by

wj = p(y|αjξj)p(αjξj)
p(y)q(ξj)

= p(y|αjξj)p(αjξj)
p(y)p(y|αjξj)p(αjξj)

= 1
p(y) (5.1.13)

for j = 1, ..., L. The Newton method will terminate in the first step with αj =

1. The IEWPF now coincides with the analytical calculation of the posterior

and draws from its distribution. We show the results in this case, where again

the colours are as in Figures 5.1 to 5.3. The dashed black curve visualises the

modified posterior distribution which is now equal to the proposal distribution

(magenta dashed curve).
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Figure 5.5: Shown are all statistics in one plot, but for the modified proposal
distribution calculated for Gaussian mixtures. Again, the blue lines indicating
the prior distribution, the green lines the likelihood, the orange lines the analysis.
The dashed black curve visualizes the modified posterior distribution which is
now equal to the proposal distribution (magenta dashed curve) calculated for
Gaussian mixtures.

5.1.4 Conclusions

We have shown that with drawing from the right proposal the LMCPF could be

interpret as a special version of the IEWPF and proved this in section 5.1.3 with

the help of a one dimensional example.

The IEWPF of Zhu et al. (2016) draws from a proposal distribution determined

by drawing from a Gaussian centered at the analysis (x(a)), i.e. the mean of

the posterior. Afterwards the α′s are determined and then used to draw from

the proposal. If we use a Gaussian Mixture to determine the proposal, as the

LMCPF does, we receive αj = 1, the IEWPF draws from the proposal which is

now equal to the analytical calculation of the posterior.
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Chapter 6

Summary and Conclusions

This final chapter summarises the two particle filters and gives an outlook on

how to proceed with them.

Standard algorithms for data assimilation used for large-scale atmospheric anal-

ysis in operational centres include the Ensemble Kalman Filter and 4d-Var.

These data assimilation methods are either inherently or practically based on

the assumption that the underlying distribution is Gaussian. If the ensemble

distribution is not Gaussian, these methods are not optimal. In the case of non-

Gaussianity more general Bayesian methods such as the particle filter have been

proposed. The core idea of the particle filter is to realise the Bayesian approach

giving a weight to each particle depending on its distance to the observations.

The adaptation of particles is carried out in different ways, either by resampling,

nudging particles towards some proposal distribution or by optimal transport

processes.

Classical particle filters in high dimensional dynamical systems suffer from filter

divergence or filter collapse due to the curse of dimensionality. In this thesis two

particle filters have been developed and implemented into the operational global

NWP model ICON of DWD - the Localised Adaptive Particle Filter (LAPF)

and the Localised Mixture Coefficients Particle Filter (LMCPF). With the help

of modulated rejuvenation, localisation in ensemble space and adaptivity we
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prevent the filter divergence as well as filter collapse.

The LAPF and the LMCPF have been tested over a period of one month with 40

ensemble members, a global horizontal resolution of 52 km and 90 vertical layers

in an operational setup with slightly reduced resolution. Both particle filters are

able to run stably over the test period of one month.

As the LAPF has been the first particle filter which has been implemented in

an operational large-scale and high dimensional NWP model it has some disad-

vantages. The LAPF just chooses the particles closest to the observations and

than drawing from them, it can’t move them towards the observations if the

prior particles are far away. So a large gap in the location between prior particle

distribution and observations can’t be handled. Therefore, we have developed

the second particle filter of this thesis, the LMCPF.

The LMCPF also runs stably over the experimental period of one month and is

even able to match the quality of the reference, determined with the LETKF.

Because of the shift vectors β(shift,`) given by (4.1.40) the LMCPF is able to move

the selected particles towards the observations and then draw around them from

a Gaussian distribution. This leads to a large improvement in comparison with

the LAPF and to results comparable to the LETKF.

To complete this thesis, the following sections will summarise both filters, start-

ing with the LAPF (section 6.1), followed by the LMCPF (section 6.2) and then

gives a brief outlook on Future Work (section 6.3).

6.1 The LAPF

The first particle filter developed in this thesis is the Localised Adaptive Particle

Filter (LAPF, chapter 3). It is based on the LETKF implementation of DWD

and stays as parallel as possible to it. It consists of the following five steps:
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1 The classical Particle Filter step (section 3.1.1, page 28)

The classical Particle Filter step uses an ensemble x(l) of states which represents

the prior probability distribution p
(b)
k at time tk in the form of δ-distributions.

To carry out the analysis step at time tk, weights are calculated by

wk,` := cp(yk|x(l)), ` = 1, ..., L,

where c is a normalisation constant.

2 Projection onto ensemble space (section 3.1.2, page 28)

As seen from (2.2.1), the LETKF is based on the projection of the observation

onto ensemble space of observation equivalents. We are doing this by calculating

A := YTR−1Y and C := A−1YTR−1(yo − yb). Localisation is performed as for

LETKF and LAPF, i.e. the matrix R is weighted according to the distance of

each of its observations to the analysis point.

3 Classical Resampling (section 3.1.3, page 31)

For resampling, accumulated weights wac`
, ` = 1, ..., L, are defined by

wac0 = 0, wac`
= wac`−1 + wk,`, ` = 1, ..., L,

where now we employ normalisation to the total weight of L. Then, we draw

r` ∼ U([0, 1]), ` = 1, ..., L, set R` = ` − 1 + r` and define the transform matrix

for the particles by

W̆i,` =


1, if R` ∈ (wac`−1 , wac`

],

0, otherwise,

i, ` = 1, .., L with W̆ ∈ RL×L, where (s, t] denotes the interval of values s < η ≤ t.
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4 Spread Control (section 3.1.4, page 31)

In ensemble data assimilation systems the spread of the ensemble evolves as a

result of model dynamics, model errors and active observations. In the opera-

tional LETKF an adaptive inflation factor ρ is estimated. For the LAPF we are

calculating

ρ = E[dTo−bdo−b]− Tr(R)
Tr
(
HPbHT

) .

at each localisation point.

5 Gaussian Resampling or Rejuvenation (section 3.1.5, page 34)

For the adaptive resampling step the size of the draw (given by N) is modulated

by applying a scalar perturbation factor σ for each analysis grid point. Scaling

of the draw around each member at time tk is carried out by

W(p) = W̆(p) + N · σ(ρk(p)).

The specification of the factor σ is calculated by:

σ(ρ) :=


c0, ρ < ρ(0),

c0 + (c1 − c0) · ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1)

c1, ρ > ρ(1),

where the constants ρ(0), ρ(1), c0, c1 are tuning constants.

Finally, the full analysis ensemble is given by

X(a,full) = x(b) + X(b)W̆︸ ︷︷ ︸
class. resampling

+ X(b)Nσ︸ ︷︷ ︸
rejuvenation

These five ingredients ensure that the LAPF doesn’t suffer from filter divergence
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or filter collapse due to the curse of dimensionality

We have implemented the LAPF in the framework of the operational global

ICON model for numerical weather prediction of DWD. The reference system

to test the feasibility of ideas and demonstrate the quality of the LAPF is the

operational LETKF implementation at DWD, which generates initial conditions

for the global ICON Ensemble Prediction System ICON-EPS.

With this system we run a global experiment with a resolution of 52 km for the

40 ensemble runs and 26 km for the deterministic run and with 90 vertical layers.

The period was taken to be a whole month, May 1-31, 2016.

We are able to show that the LAPF runs stably over the whole period of one

month and gives results comparable to the LETKF. It is therefore the first par-

ticle filter implemented in an operational global NWP model which runs stably

and gives results close to the quality of the reference LETKF as we can see from

the results shown in section 3.2. We have shown that for the RMSE the quality

of forecasts is 10-15% behind the forecast quality of the LETKF for forecasts up

to several days (compare Figures 3.6 and 3.7) and the bias is partly improved, in

particular for humidity. Altogether, for the assimilation cycle and forecasts the

LAPF shows promising results.

6.2 The LMCPF

The second particle filter developed in this thesis is the Localised Mixture Co-

efficients Particle Filter (LMCPF, chapter 4). The LMCPF uses an analysis

distribution based on localised Gaussian mixtures, whose posterior coefficients,

covariances and means are calculated based on the prior mixture given by the

ensemble first guess and the observations. The analysis step is completed by

resampling and rejuvenation based on the LAPF techniques.

In contrast to the LAPF, which just makes a choice on which particles will

survive, the LMCPF is able to move or shift the first guess ensemble towards the

observations, which is consistent with the non-Gaussian posterior distribution
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based on a Bayesian analysis step. This move is controlled by the size of the

uncertainty of the individual particles.

The LMCPF consists of the following six steps (see also section 4.1.3),

1 The classical Particle Filter step

We start with some initial ensemble x(a,`)
0 at time t0. We carry out a propaga-

tion step, i.e. we run the model forward from time tk−1 to tk for each ensemble

member, leading to the background ensemble x(b,`)
k at time tk.

2 Projection onto ensemble space

Then, at each localisation point ξ on a coarser analysis grid G we carry out

the localised ensemble transform (4.1.36), calculating C and A. Localisation is

carried out as for the LETKF and LAPF, i.e. the matrix R is weighted depending

of the distance of each of its observations to the analysis point.

3 Classical Resampling

We now carry out a classical resampling step following Section 3.1.3. This leads

to a matrix

W̆i,` =


1, if R` ∈ (waci−1 , waci

],

0, otherwise,

i, ` = 1, ..., L, draw r` ∼ U([0, 1]), set R` = `− 1 + r`, with accumulated weights

wac, wac0 = 0, waci
= waci−1 +wk,i, wk,i := p(yk|x(b,i)) and W̆ ∈ RL×L with entries

one or zero reflecting the choice of particles.

4 Posterior matrix and shift vectors

The posterior matrix G(a)
ens given by (4.1.38) and the shift vectors β(shift,`) given

by (4.1.40) for ` = 1, ..., L are calculated for each localisation point. We define

W(shift) :=
(
β(shift,1), ..., β(shift,L)

)
∈ RL×L.
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We obtain the shifts for these particles by the product W(shift)W̆. According to

the analysis equation (4.1.37) the new coordinates in ensemble space are calcu-

lated by (
β(a,1), ..., β(a,L)

)
= W̆ + W(shift)W̆.

5 Spread Control

For each particle we now carry out an adaptive Gaussian resampling or rejuvena-

tion step. The rejuvenation is carried out the same way as described in Sections

3.1.4 and 3.1.5, i.e. we first calculate

ρ = dTo−bdo−b − Tr(R)
Tr(H 1

L−1XXTHT )

at each localisation point, with the actual ensemble covariance matrix 1
L−1XXT

and with the observation minus background statistics do−b = yk − ȳk where ȳk

denotes the ensemble mean in observation space described in (4.1.4) at time tk.

6 Gaussian Resampling or Rejuvenation

We scale ρ by some function

σ(ρ) :=


c0, ρ < ρ(0),

c0 + (c1 − c0) ρ−ρ(0)

ρ(1)−ρ(0) , ρ(0) ≤ ρ ≤ ρ(1),

c1, ρ > ρ(1),

where the constants ρ(0), ρ(1), c0, c1 are tuning constants. Then, the rejuvenation

plus shift step is carried out by

W := W̆ + W(shift)W̆ + [G(a)
ens]

1
2 Nσ.
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Finally we calculate the analysis ensemble by

X(a,full) = x(b) + X(b)W

= x(b) + X(b)W̆︸ ︷︷ ︸
class. resampling

+ X(b)W(shift)W̆︸ ︷︷ ︸
shift

+ X(b)[G(a)
ens]

1
2 Nσ︸ ︷︷ ︸

adapt. Gauss. resampling

The LETKF does not know the selection reflected by the matrix W̆, instead it

transforms the ensemble by its matrix W. The LETKF and the LMCPF know

a shift term, for the LETKF it is given by w, for the LMCPF by W(shift)W̆,

shifting each particle according to model error, where the LETKF shifts accord-

ing to the full ensemble spread. The LMCPF also takes into account that part

of the ensemble spread which is kept during the selection process. Further, it

employs adaptive resampling around each remaining shifted particle. This helps

to keep the filter stable and achieve an appropriate uncertainty described by o−b

statistics.

We have implemented the LMCPF in the operational NWP model ICON of

DWD. The experiments carried out with the same setup as the experiments

with the LAPF - we run a global experiment with 52 km resolution, 90 vertical

layer and 40 ensemble members. Again, the experimental periods have been one

whole month, the first period May 2016, the second experimental period has

been January 2022.

In section 4.3 we have shown that the LMCPF runs stably for both whole ex-

perimental periods of one month. Our investigation includes a study of the

distribution of observations with respect to the ensemble mean and statistics of

the distance of ensemble members to the projection of the observations into en-

semble space. We also study the average size of particle moves when uncertainty

is employed for individual Gaussian particles within the LMCPF.

Furthermore, we showed that the upper air first guess errors of the LMCPF

and LETKF during the assimilation cycle are very similar within a range of
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plus-minus 1-3%, with the LMCPF being better below 850 hPa and the LETKF

being better in some range above. Forecast scores demonstrating as well that

the RMSE of the ensembles is comparable for upper air temperature, relative

humidity, wind fields and pressure (2-3%).

In several shorter case studies we demonstrate that by varying the parameter

choices, we can achieve better first guess RMSE for the LMCPF in comparison

to the LETKF, which shows that for very short range forecasts the quality of

the method can be comparable to or better than that of the LETKF.

Overall, with the LMCPF we demonstrate significant progress compared to the

LAPF for NWP in an operational setup, demonstrating that the LMCPF has

reached a stability and quality comparable to that of the LETKF, while allowing

and accounting for various non-Gaussian distributions in its analysis steps.

However, the LMCPF in this thesis is almost untuned, e.g. we haven’t had a

closer look at the observation handling. There is also a lot of work to be done

to calibrate e.g. the tuning constants in (4.1.45) or the parameters of Table 4.1.

6.3 Future Work

Finally, to complete this thesis, what will be done next?

Of course, there is a lot of further work necessary. While reaching a break-even

point for operational scores with a new method establishes an important mile-

stone, we need to note that there are many open and intricate scientific questions

here with respect to the choice of parameters for the Gaussian mixture and their

dependence on the control of an optimal and correct ensemble spread both in

the analysis cycle and for the forecasts. Also, in further steps we will take a

look at the quality control. Currently, the LMCPF and the LETKF are using

the same observation quality control, but the LMCPF seems to need a more

accurate approach.
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Besides that, the studies carried out for this thesis only cover a the period of one

month. It would also be interesting to study the behaviour of the LMCPF over

a longer period of time, e.g. a whole year.

Moreover, we have implemented the LAPF and LMCPF in the Lorenz 63 and

Lorenz 96 models and have studied the characteristics of the particle filters in

low-dimensional systems (Schenk et al., 2022).

Recently, the LMCPF has been implemented in the operational regional ICON-

D2 model of the DWD. As the time variable in this regional setup is much more

important as in the global setup, implementing a particle filter in this setup will

lead into a 4d-particle filter version.

Furthermore, it would also be interesting to test the LMCPF in the ICON model

with Aerosols and Reactive Trace gases (ICON-ART) (operational since end of

March 2024), which is able to simulate the spatiotemporal evoultion of aerorols

and trace gases (Rieger et al., 2015; Schröter et al., 2018). As the LMCPF should

be able to handle with extreme events better than the LETKF, because it can

give a higher weight to a few particles closer to the observations, the LMCPF

should be able to outperform the LETKF in these cases.

In addition to the ICON-ART model, the DWD is also developing an ocean model

(ICON-O, see Korn (2017)) and a coupling between this ocean model and the

atmospheric ICON model. Again, we could be the first to study the behaviour of

the LMCPF in a high-dimensional global ocean model or a fully coupled ocean-

atmosphere model and to verify that the LMCPF gives reasonable results even

in the case of the slow changes in the ocean.

Of course, there are many more models and applications in which particle filters

can be used. For example, outside the weather forecasting community Kalman

Filters and particle filters are used to model the yield of crops (compare e.g.

Zare et al. (2022); Fattori Junior et al. (2022)). Again, the LMCPF should be

able to to outperform the Kalman filters because of its ability to give the most
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weight to the particles clostest to the observations and to move them towards

the observations.

Finally, we can conclude that we have developed and implemented the LMCPF

in the ICON model, which is able to outperform the reference LETKF in some

cases. With this basic work done, we are now able to further tune and improve

the LMCPF and reach a level where it should be able to completely outperform

the LETKF abd where we are able to use the LMCPF operationally.
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